IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11010-d1544522.html
   My bibliography  Save this article

Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea

Author

Listed:
  • Kyeong-Mi Kim

    (Department of Electronics Engineering, Hanyang University, ERICA, Ansan 15588, Republic of Korea)

  • Dongwoo Kim

    (Department of Electronics Engineering, Hanyang University, ERICA, Ansan 15588, Republic of Korea)

Abstract

This study evaluated the greenhouse gas (GHG) emissions associated with hydrogen production in South Korea (hereafter referred to as Korea) using water electrolysis. Korea aims to advance hydrogen as a clean fuel for transportation and power generation. To support this goal, we employed a life cycle assessment (LCA) approach to evaluate the emissions across the hydrogen supply chain in a well-to-pump framework, using the Korean clean hydrogen certification tiers. Our assessment covered seven stages, from raw material extraction for power plant construction to hydrogen production, liquefaction, storage, and distribution to refueling stations. Our findings revealed that, among the sixteen power sources evaluated, hydroelectric and onshore wind power exhibited the lowest emissions, qualifying as the Tier 2 category of emissions between 0.11 and 1.00 kgCO 2 e/kg H 2 under a well-to-pump framework and Tier 1 category of emissions below 0.10 kgCO 2 e/kg H 2 under a well-to-gate framework. They were followed by photovoltaics, nuclear energy, and offshore wind, all of which are highly dependent on electrolysis efficiency and construction inputs. Additionally, the study uncovered a significant impact of electrolyzer type on GHG emissions, demonstrating that improvements in electrolyzer efficiency could substantially lower GHG outputs. We further explored the potential of future energy mixes for 2036, 2040, and 2050, as projected by Korea’s energy and environmental authorities, in supporting clean hydrogen production. The results suggested that with progressive decarbonization of the power sector, grid electricity could meet Tier 2 certification for hydrogen production through electrolysis, and potentially reach Tier 1 when considering well-to-gate GHG emissions.

Suggested Citation

  • Kyeong-Mi Kim & Dongwoo Kim, 2024. "Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11010-:d:1544522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Resalati, Shahaboddin & Okoroafor, Tobechi & Maalouf, Amani & Saucedo, Edgardo & Placidi, Marcel, 2022. "Life cycle assessment of different chalcogenide thin-film solar cells," Applied Energy, Elsevier, vol. 313(C).
    2. Rudha Khudhair Mohammed & Hooman Farzaneh, 2023. "Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design," Energies, MDPI, vol. 16(3), pages 1-35, February.
    3. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamad Ahmed Al-Ali & Koji Tokimatsu, 2025. "Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions," Energies, MDPI, vol. 18(15), pages 1-33, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Safari & Farbod Esmaeilion & A. Rabanian & D. H. Jamali & S. Negi & S. Hoseinzadeh & F. Sayedin & S. S. Bhoglla & M. El. Haj Assad & B. Das & M. A. Ehyaei & A. Ahmadi & M. Soltani & Hamed Afshari, 2025. "Sustainable hydrogen production through water splitting: a comprehensive review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(8), pages 17887-17926, August.
    2. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    3. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    6. Koponen, Joonas & Ruuskanen, Vesa & Hehemann, Michael & Rauls, Edward & Kosonen, Antti & Ahola, Jero & Stolten, Detlef, 2020. "Effect of power quality on the design of proton exchange membrane water electrolysis systems," Applied Energy, Elsevier, vol. 279(C).
    7. Alessandro Lima & Jorge Torrubia & Alicia Valero & Antonio Valero, 2025. "Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production," Energies, MDPI, vol. 18(6), pages 1-24, March.
    8. Wong, A.K.C. & Ge, N. & Shrestha, P. & Liu, H. & Fahy, K. & Bazylak, A., 2019. "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 240(C), pages 549-560.
    9. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).
    10. Lucia F. Pérez Garcés & Karol Sztekler & Leonardo Azevedo & Piotr Boruta & Tomasz Bujok & Ewelina Radomska & Agata Mlonka-Mędrala & Łukasz Mika & Tomasz Chmielniak, 2024. "Assessment of the Use of Carbon Capture and Storage Technology to Reduce CO 2 Emissions from a Natural Gas Combined Cycle Power Plant in a Polish Context," Energies, MDPI, vol. 17(13), pages 1-16, July.
    11. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    12. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    13. Gagliardi, Gabriele Guglielmo & Cosentini, Carlotta & Agati, Giuliano & Borello, Domenico & Venturini, Paolo, 2025. "Green hydrogen production via floating photovoltaic systems on irrigation reservoirs: An Italian case study," Renewable Energy, Elsevier, vol. 247(C).
    14. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    15. Hughes, J.P. & Clipsham, J. & Chavushoglu, H. & Rowley-Neale, S.J. & Banks, C.E., 2021. "Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    17. Janos Lucian Breuer & Juri Scholten & Jan Christian Koj & Felix Schorn & Marc Fiebrandt & Remzi Can Samsun & Rolf Albus & Klaus Görner & Detlef Stolten & Ralf Peters, 2022. "An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany," Energies, MDPI, vol. 15(4), pages 1-65, February.
    18. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    19. Busch, P. & Kendall, A. & Lipman, T., 2023. "A systematic review of life cycle greenhouse gas intensity values for hydrogen production pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Qasim Mudher Modhehi & Haider Mohammed Zwain, 2025. "Life Cycle Assessment and Environmental Impact Evaluation of Demineralized Water Production at Al-Hilla Second Gas Power Plant, Iraq," Resources, MDPI, vol. 14(9), pages 1-17, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11010-:d:1544522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.