IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7464-d1466513.html
   My bibliography  Save this article

Study on the Development Status and Promotion Strategy of Zero-Emission Commercial Vehicles in China under the Background of the Dual Carbon Target

Author

Listed:
  • Jia Ke

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Dezhao Zhu

    (Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China)

  • Yanjun Wang

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Chunxiao Hao

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Yan Ding

    (State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

Abstract

The adoption of new energy vehicles (NEVs) is an effective strategy for pollution reduction, especially for high-emitting commercial vehicles. This paper systematically reviews the promotion policies and development status of zero-emission commercial vehicles (ZECVs) in China, with a focus on diverse application scenarios. Comprehensive policies, including subsidies, right-of-way, infrastructure development, and environmental protection incentives, have significantly advanced NEV adoption, as demonstrated by Shenzhen’s full electrification of buses and the extensive deployment of zero-emission trucks. Despite the overall slow development of ZECVs, regions in southern China and developed areas exhibit better progress. Medium and large passenger vehicles (MLPVs) have achieved a zero-emission rate of around 40%, contrasting with the significantly lower rates of 1.52% for mini and light trucks (MLTs) and 0.44% for medium and heavy trucks (MHTs). Electrification promotion varies significantly in different application scenarios, with buses leading at over 90% zero-emission rates, followed by the airport (24%) and port (16%) vehicles. The electrification of sanitation, logistics, and key industry transport, through lagging, is enhanced by targeted policies and local industry. Buses are designated as the highest priority (Level 1) for electrification transition while intercity logistics and vehicles in key industries are categorized as the lowest priority (Level 4). In addition, policy recommendations, including tailored strategies for ZECV promotion and emission reductions in traditional commercial vehicles, are put forward to provide guidance and reference for setting future zero-emission promotion goals and policy direction for commercial vehicles in subdivided application scenarios.

Suggested Citation

  • Jia Ke & Dezhao Zhu & Yanjun Wang & Chunxiao Hao & Yan Ding, 2024. "Study on the Development Status and Promotion Strategy of Zero-Emission Commercial Vehicles in China under the Background of the Dual Carbon Target," Sustainability, MDPI, vol. 16(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7464-:d:1466513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    2. Feng, Jian & Yao, Yifan & Liu, Zhenfeng & Liu, Zhenling, 2024. "Electric vehicle charging stations' installing strategies: Considering government subsidies," Applied Energy, Elsevier, vol. 370(C).
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    5. Tan, Ruipeng & Tang, Di & Lin, Boqiang, 2018. "Policy impact of new energy vehicles promotion on air quality in Chinese cities," Energy Policy, Elsevier, vol. 118(C), pages 33-40.
    6. Chen, Xinjiang & Yang, Yu & Wang, Jianxiao & Song, Jie & He, Guannan, 2023. "Battery valuation and management for battery swapping station," Energy, Elsevier, vol. 279(C).
    7. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    8. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianjun Liu & Jixian Cui & Yixi Li & Yinping Luo & Qianru Zhu & Yutao Luo, 2021. "Synergistic Air Pollutants and GHG Reduction Effect of Commercial Vehicle Electrification in Guangdong’s Public Service Sector," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    2. Xiao, Xu & Chen, Zi-Rui & Nie, Pu-Yan, 2020. "Analysis of two subsidies for EVs: Based on an expanded theoretical discrete-choice model," Energy, Elsevier, vol. 208(C).
    3. Mihai Machedon-Pisu & Paul Nicolae Borza, 2023. "Is the Transition to Electric Passenger Cars Sustainable? A Life Cycle Perspective," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    6. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    7. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    8. Wang, Kunlun & Zheng, Leven J. & Lin, Boqiang, 2024. "Demand-side incentives, competition, and firms’ innovative activities: Evidence from automobile industry in China," Energy Economics, Elsevier, vol. 132(C).
    9. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    10. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    11. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    12. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    13. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    14. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    15. Chi Zhang & Binyue Xu & Jasronita Jasni & Mohd Amran Mohd Radzi & Norhafiz Azis & Qi Zhang, 2023. "Three Voltage Vector Duty Cycle Optimization Strategy of the Permanent Magnet Synchronous Motor Driving System for New Energy Electric Vehicles Based on Finite Set Model Predictive Control," Energies, MDPI, vol. 16(6), pages 1-18, March.
    16. Zhang, Chuanguo & Tu, Xiaohua, 2016. "The effect of global oil price shocks on China's metal markets," Energy Policy, Elsevier, vol. 90(C), pages 131-139.
    17. Erick C. Jones, 2024. "Lithium Supply Chain Optimization: A Global Analysis of Critical Minerals for Batteries," Energies, MDPI, vol. 17(11), pages 1-31, May.
    18. Andre L. Carrel & Lee V. White & Christina Gore & Harsh Shah, 2024. "Subscribing to new technology: consumer preferences for short-term ownership of electric vehicles," Transportation, Springer, vol. 51(3), pages 875-909, June.
    19. Yazhi Song & Yin Li & Jingjing Jiang & Bin Ye, 2025. "The industrial prospect of electric vehicles—time delay stochastic evolutionary game evidence from the U.S., China, the EU, and Japan," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-17, December.
    20. Li, Xiang & Liu, Yinchen & Qu, Yang & Ding, Lu & Yan, Xiaoyu, 2025. "Effect of electric vehicles and renewable electricity on future life cycle air emissions from China's road transport fleet," Energy, Elsevier, vol. 318(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7464-:d:1466513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.