IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7335-d1135339.html
   My bibliography  Save this article

A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods

Author

Listed:
  • Ju Yeong Kwon

    (Department of AI Design & Design Science, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea)

  • Jung Kyung Kim

    (School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea)

  • Hyunjin Lee

    (School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea)

  • Dongchan Lee

    (Department of Mechanical and Information Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea)

  • Da Young Ju

    (Department of AI Design & Design Science, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea)

Abstract

Thermal management in automobiles is necessary to minimize energy usage while achieving a high level of occupant thermal perception. As the freedom of in-vehicle activity increases with autonomous driving, considering convenience becomes even more important, and, at the same time, the need for thermal management in electric vehicles is expected to increase. While it is necessary to consider the characteristics of the future mobility environment, there is still a lack of research that takes into account these changes in thermal management and proposes future research directions. Therefore, the purpose of this study is to explore basic research directions based on national R&D project cases and to provide a comprehensive overview. The environmental changes that need to be considered in thermal management research include the diversification of future transportation types and usage purpose diversification, the characteristics of electric vehicles, changes in the interior and exterior design of autonomous vehicles, personalized air conditioning environments, and dynamic thermal management according to occupant in-vehicle activity. This study provides an understanding of the overall field, and can help identify challenges, solutions, and ideas. Although this study provides conceptual considerations for research directions, future research is needed to identify detailed factors related to technology, environment, and human factors.

Suggested Citation

  • Ju Yeong Kwon & Jung Kyung Kim & Hyunjin Lee & Dongchan Lee & Da Young Ju, 2023. "A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7335-:d:1135339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anas Lahlou & Florence Ossart & Emmanuel Boudard & Francis Roy & Mohamed Bakhouya, 2020. "A Real-Time Approach for Thermal Comfort Management in Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-22, August.
    2. Ma, Jing & Sun, Yongfei & Zhang, Shiang, 2023. "Experimental investigation on energy consumption of power battery integrated thermal management system," Energy, Elsevier, vol. 270(C).
    3. Daniele Basciotti & Dominik Dvorak & Imre Gellai, 2020. "A Novel Methodology for Evaluating the Impact of Energy Efficiency Measures on the Cabin Thermal Comfort of Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-16, July.
    4. Anas Lahlou & Florence Ossart & Emmanuel Boudard & Francis Roy & Mohamed Bakhouya, 2020. "Optimal Management of Thermal Comfort and Driving Range in Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-31, August.
    5. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    6. Adrian König & Sebastian Mayer & Lorenzo Nicoletti & Stephan Tumphart & Markus Lienkamp, 2022. "The Impact of HVAC on the Development of Autonomous and Electric Vehicle Concepts," Energies, MDPI, vol. 15(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
    2. Simone Lombardi & Manfredi Villani & Daniele Chiappini & Laura Tribioli, 2020. "Cooling System Energy Consumption Reduction through a Novel All-Electric Powertrain Traction Module and Control Optimization," Energies, MDPI, vol. 14(1), pages 1-22, December.
    3. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    4. Meng Li & Siyu Zheng & Mingshan Wei, 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, June.
    5. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Youssef NaitMalek & Mehdi Najib & Anas Lahlou & Mohamed Bakhouya & Jaafar Gaber & Mohamed Essaaidi, 2022. "A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    7. James Jeffs & Andrew McGordon & Alessandro Picarelli & Simon Robinson & Yashraj Tripathy & Widanalage Dhammika Widanage, 2018. "Complex Heat Pump Operational Mode Identification and Comparison for Use in Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-24, August.
    8. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    9. Ziqi Zhang & Wanyong Li & Junye Shi & Jiangping Chen, 2016. "A Study on Electric Vehicle Heat Pump Systems in Cold Climates," Energies, MDPI, vol. 9(11), pages 1-11, October.
    10. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    11. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    12. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    13. Tao Lei & Zhihao Min & Qinxiang Gao & Lina Song & Xingyu Zhang & Xiaobin Zhang, 2022. "The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends," Energies, MDPI, vol. 15(11), pages 1-37, June.
    14. Weckerle, C. & Nasir, M. & Hegner, R. & Bürger, I. & Linder, M., 2020. "A metal hydride air-conditioning system for fuel cell vehicles – Functional demonstration," Applied Energy, Elsevier, vol. 259(C).
    15. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.
    16. Xiaoxiao Ding & Weirong Zhang & Zhen Yang & Jiajun Wang & Lingtao Liu & Dalong Gao & Dongdong Guo & Jianyin Xiong, 2022. "Effect of Open-Window Gaps on the Thermal Environment inside Vehicles Exposed to Solar Radiation," Energies, MDPI, vol. 15(17), pages 1-18, September.
    17. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2019. "Integrated Energy and Thermal Management for Electrified Powertrains," Energies, MDPI, vol. 12(11), pages 1-24, May.
    18. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.
    19. Yunren Sui & Zengguang Sui & Guangda Liang & Wei Wu, 2023. "Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    20. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7335-:d:1135339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.