IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318744.html
   My bibliography  Save this article

A metal hydride air-conditioning system for fuel cell vehicles – Functional demonstration

Author

Listed:
  • Weckerle, C.
  • Nasir, M.
  • Hegner, R.
  • Bürger, I.
  • Linder, M.

Abstract

High pressure storage of hydrogen is the established storage technology for automotive systems. However, around 15% of the lower heating value of hydrogen is spent to compress hydrogen up to the pressure of 700 bar. Since this energy is available on board but so far wasted, an open air-conditioning system based on metal hydrides is promising to reutilize this compression work. Here we present the experimental demonstration of a first of its kind system. The setup consists of two alternately operating plate reactors, each filled with around 1.5 kg of Hydralloy C2 (Ti0.98Zr0.02V0.41Fe0.09Cr0.05Mn1.46), coupled to a polymer electrolyte membrane fuel cell. The demonstration at an electrical power of 5 kW shows that the fuel cell operation is not affected by the alternately H2 desorbing reactors (half-cycle duration of 150 s). The system’s average cooling power was 662 W for an ambient temperature of 30 °C and a cooling temperature of 20 °C, reaching of specific cooling power of 227WkgMH-1. Related to the maximum obtainable cooling power of 18.3% of the electrical fuel cell power, the cooling efficiency corresponds to 75%. As an innovative hydrogen pressure transducer the presented system can be transferred to all applications where an unused hydrogen pressure difference is available.

Suggested Citation

  • Weckerle, C. & Nasir, M. & Hegner, R. & Bürger, I. & Linder, M., 2020. "A metal hydride air-conditioning system for fuel cell vehicles – Functional demonstration," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318744
    DOI: 10.1016/j.apenergy.2019.114187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    2. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    3. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
    4. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    5. Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singer, Gerald & Köll, Rebekka & Aichhorn, Lukas & Pertl, Patrick & Trattner, Alexander, 2023. "Utilizing hydrogen pressure energy by expansion machines – PEM fuel cells in mobile and other potential applications," Applied Energy, Elsevier, vol. 343(C).
    2. Sreeraj, R. & Aadhithiyan, A.K. & Anbarasu, S., 2022. "Comparison, advancement, and performance evaluation of heat exchanger assembly in solid-state hydrogen storage device," Renewable Energy, Elsevier, vol. 198(C), pages 667-678.
    3. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    4. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    5. Christoph Weckerle & Marius Dörr & Marc Linder & Inga Bürger, 2020. "A Compact Thermally Driven Cooling System Based on Metal Hydrides," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Xie, Peng & Jin, Lu & Qiao, Geng & Lin, Cheng & Barreneche, Camila & Ding, Yulong, 2022. "Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    8. Kölbig, M. & Weckerle, C. & Linder, M. & Bürger, I., 2022. "Review on thermal applications for metal hydrides in fuel cell vehicles: Operation modes, recent developments and crucial design aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    10. Kölbig, Mila & Bürger, Inga & Linder, Marc, 2021. "Thermal applications in vehicles using Hydralloy C5 in single and coupled metal hydride systems," Applied Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    2. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    3. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    4. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    5. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    6. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    7. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2019. "Integrated Energy and Thermal Management for Electrified Powertrains," Energies, MDPI, vol. 12(11), pages 1-24, May.
    8. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    9. Selcuk Bulat & Erdal Büyükbicakci & Mustafa Erkovan, 2024. "Efficiency Enhancement in Photovoltaic–Thermoelectric Hybrid Systems through Cooling Strategies," Energies, MDPI, vol. 17(2), pages 1-12, January.
    10. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    11. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    12. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    13. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    14. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    15. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    16. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    17. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    18. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    19. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    20. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.