IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp560-573.html
   My bibliography  Save this article

Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles

Author

Listed:
  • Wu, Wei
  • Zhai, Chong
  • Sui, Zengguang
  • Sui, Yunren
  • Luo, Xianglong

Abstract

Hydrogen fuel cell vehicles pave a promising technological pathway to achieve carbon neutrality. Conventional electric air-conditioning greatly increases hydrogen consumption and thus reduces the driving range. To recover waste heat for vehicle air-conditioning, this study proposes an integrated proton exchange membrane fuel cell (PEMFC) and microchannel membrane-based absorption cooling (MMAC) system. Using a validated model, the PEMFC-MMAC system is characterized under different vital parameters. The PEMFC parameters affect the performance of both PEMFC and MMAC. The coupled performance of the PEMFC-MMAC system increases under a higher operating temperature, a higher operating pressure, or a higher doping level. The MMAC parameters mainly affect the performance of MMAC. The coupled performance of the PEMFC-MMAC system increases under a lower microchannel width or a lower microchannel height. In the covered PEMFC and MMAC parameter ranges, the combined energy efficiencies are improved by 202–273% while the equivalent power efficiencies are improved by 11.4–14.8% with heat recovery. The cooling-to-electrical ratio is 2.02–2.73, the cooling capacity per volume is 129.4–345.9 kW/m3, while the cooling capacity per mass is 0.0439–0.1132 kW/kg. Compared to the existing falling-film absorption cooling technology, the MMAC improves the compactness by 165.1%, reduces the weight by 51.3%, and enhances the COP by 2.6%. This study can facilitate the development of highly-compact, light-weight, energy-efficient, and zero-GWP technology for waste-driven air-conditioning in hydrogen vehicles.

Suggested Citation

  • Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:560-573
    DOI: 10.1016/j.renene.2021.06.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
    2. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    3. Zhang, Hongzhi & Han, Zongwei & Li, Gui & Ji, Mingzhen & Cheng, Xinlu & Li, Xiuming & Yang, Lingyan, 2021. "Study on the influence of pipe spacing on the annual performance of ground source heat pumps considering the factors of heat and moisture transfer, seepage and freezing," Renewable Energy, Elsevier, vol. 163(C), pages 262-275.
    4. Ali, Ahmed Hamza H., 2010. "Design of a compact absorber with a hydrophobic membrane contactor at the liquid-vapor interface for lithium bromide-water absorption chillers," Applied Energy, Elsevier, vol. 87(4), pages 1112-1121, April.
    5. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    6. Özçelep, Yasin & Sevgen, Selcuk & Samli, Ruya, 2020. "A study on the hydrogen consumption calculation of proton exchange membrane fuel cells for linearly increasing loads: Artificial Neural Networks vs Multiple Linear Regression," Renewable Energy, Elsevier, vol. 156(C), pages 570-578.
    7. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    8. Javani, N. & Dincer, I. & Naterer, G.F., 2012. "Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles," Energy, Elsevier, vol. 46(1), pages 109-116.
    9. Weckerle, C. & Nasir, M. & Hegner, R. & Bürger, I. & Linder, M., 2020. "A metal hydride air-conditioning system for fuel cell vehicles – Functional demonstration," Applied Energy, Elsevier, vol. 259(C).
    10. Weckerle, C. & Nasri, M. & Hegner, R. & Linder, M. & Bürger, I., 2019. "A metal hydride air-conditioning system for fuel cell vehicles – Performance investigations," Applied Energy, Elsevier, vol. 256(C).
    11. Xu, Z.Y. & Wang, R.Z., 2017. "Simulation of solar cooling system based on variable effect LiBr-water absorption chiller," Renewable Energy, Elsevier, vol. 113(C), pages 907-914.
    12. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    13. Du, S. & Wang, R.Z. & Chen, X., 2017. "Development and experimental study of an ammonia water absorption refrigeration prototype driven by diesel engine exhaust heat," Energy, Elsevier, vol. 130(C), pages 420-432.
    14. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    15. Jianbo, Li & Shiming, Xu & Xiangqiang, Kong & Kai, Liu & Fulin, Cui, 2019. "Experimental study on absorption/compression hybrid refrigeration cycle," Energy, Elsevier, vol. 168(C), pages 1237-1245.
    16. Jalil, E. & Goudarzi, K., 2020. "Effect of adsorbent configuration on performance enhancement of continuous solar adsorption chiller with four quadric parabolic concentrators," Renewable Energy, Elsevier, vol. 158(C), pages 360-369.
    17. Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
    18. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
    2. Yu, Yadong & Guo, Ying & Ma, Tieju, 2023. "Prioritizing the hydrogen pathways for fuel cell vehicles: Analysis of the life-cycle environmental impact, economic cost, and environmental efficiency," Energy, Elsevier, vol. 281(C).
    3. Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.
    4. Wang, Hanbin & Luo, Chunhuan & Zhang, Rudan & Li, Yongsheng & Yang, Changchang & Li, Zexiang & Li, Jianhao & Li, Na & Li, Yiqun & Su, Qingquan, 2023. "Experiment and performance evaluation of an integrated low-temperature proton exchange membrane fuel cell system with an absorption chiller," Renewable Energy, Elsevier, vol. 215(C).
    5. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    2. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    3. Christoph Weckerle & Marius Dörr & Marc Linder & Inga Bürger, 2020. "A Compact Thermally Driven Cooling System Based on Metal Hydrides," Energies, MDPI, vol. 13(10), pages 1-23, May.
    4. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    5. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    6. Kölbig, Mila & Bürger, Inga & Linder, Marc, 2021. "Thermal applications in vehicles using Hydralloy C5 in single and coupled metal hydride systems," Applied Energy, Elsevier, vol. 287(C).
    7. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    8. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    9. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    10. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    11. Hu, Tianxiang & Shen, Yongting & Kwan, Trevor Hocksun & Pei, Gang, 2022. "Absorption chiller waste heat utilization to the desiccant dehumidifier system for enhanced cooling – Energy and exergy analysis," Energy, Elsevier, vol. 239(PA).
    12. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    13. Kölbig, M. & Weckerle, C. & Linder, M. & Bürger, I., 2022. "Review on thermal applications for metal hydrides in fuel cell vehicles: Operation modes, recent developments and crucial design aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    15. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    16. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    17. Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
    18. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    19. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    20. David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:560-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.