IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3610-d1129926.html
   My bibliography  Save this article

Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models

Author

Listed:
  • Baby-Jean Robert Mungyeko Bisulandu

    (Laboratoire de Recherche en Energie Eolienne (LREE), Université du Québec à Rimouski (UQAR), 300 All. des Ursulines, Rimouski, QC G5L 3A1, Canada
    Institut de Recherche Futuris—Futuris Research Institute (InReF), OEFC & Faculté Polytechnique, Université Kongo, Mbanza-Ngungu P.B. 202, Kongo Central, Democratic Republic of the Congo)

  • Rami Mansouri

    (Laboratoire de Recherche en Energie Eolienne (LREE), Université du Québec à Rimouski (UQAR), 300 All. des Ursulines, Rimouski, QC G5L 3A1, Canada)

  • Adrian Ilinca

    (Département de Génie Mécanique, École de Technologie Supérieure, Université du Québec, 1100, Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada)

Abstract

The energy transition, originating in the limitation of fossil resources and greenhouse gas (GHG) emission reduction, is the basis of many studies on renewable energies in different industrial applications. The diffusion absorption refrigeration machines are very promising insofar as they allow the use of renewable resources (solar, geothermal, waste gas, etc.). This technology is often considered an alternative to vapor compression systems in cooling and refrigeration applications. This paper aims to overview the thermal mechanisms related to modeling system energy sources and highlight the primary methodologies and techniques used. We study and analyze the technology’s current challenges and future directions and, finally, identify the gaps in the existing models to pave the way for future research. The paper also gives a classification of absorption refrigeration systems (ARS) to position and limit the scope of the study. The paper will help researchers who approach the various aspects to have a global synthetic analysis of the mechanisms characterizing the modeling of energy sources of absorption refrigeration machines.

Suggested Citation

  • Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3610-:d:1129926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    2. Du, S. & Wang, R.Z. & Chen, X., 2017. "Development and experimental study of an ammonia water absorption refrigeration prototype driven by diesel engine exhaust heat," Energy, Elsevier, vol. 130(C), pages 420-432.
    3. Wang, Lei & Liu, Jiapeng & Zou, Tao & Du, Jingwei & Jia, Fengze, 2018. "Auto-tuning ejector for refrigeration system," Energy, Elsevier, vol. 161(C), pages 536-543.
    4. Osman Wageiallah Mohammed & Guo Yanling, 2017. "Comprehensive Parametric Study of a Solar Absorption Refrigeration System to Lower Its Cut In/Off Temperature," Energies, MDPI, vol. 10(11), pages 1-26, October.
    5. Choudhury, B. & Chatterjee, P.K. & Sarkar, J.P., 2010. "Review paper on solar-powered air-conditioning through adsorption route," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2189-2195, October.
    6. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    7. Ben Ezzine, N. & Garma, R. & Bourouis, M. & Bellagi, A., 2010. "Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling," Renewable Energy, Elsevier, vol. 35(2), pages 464-470.
    8. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    9. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    10. Janghorban Esfahani, I. & Yoo, C.K., 2013. "Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers," Energy, Elsevier, vol. 59(C), pages 340-355.
    11. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    12. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    13. Munyeowaji Mbikan & Tarik Al-Shemmeri, 2017. "Computational Model of a Biomass Driven Absorption Refrigeration System," Energies, MDPI, vol. 10(2), pages 1-15, February.
    14. Karamangil, M.I. & Coskun, S. & Kaynakli, O. & Yamankaradeniz, N., 2010. "A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1969-1978, September.
    15. Boopathi Raja, V. & Shanmugam, V., 2012. "A review and new approach to minimize the cost of solar assisted absorption cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6725-6731.
    16. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    17. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    18. Taieb, Ahmed & Mejbri, Khalifa & Bellagi, Ahmed, 2016. "Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle," Energy, Elsevier, vol. 115(P1), pages 418-434.
    19. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    20. Papadopoulos, Athanasios I. & Kyriakides, Alexios-Spyridon & Seferlis, Panos & Hassan, Ibrahim, 2019. "Absorption refrigeration processes with organic working fluid mixtures- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 239-270.
    21. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    22. Lin, P. & Wang, R.Z. & Xia, Z.Z., 2011. "Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling: Cycle analysis and absorption cooling performances," Renewable Energy, Elsevier, vol. 36(5), pages 1401-1412.
    23. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    24. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    25. Ben Ezzine, N. & Garma, R. & Bellagi, A., 2010. "A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling," Energy, Elsevier, vol. 35(5), pages 1874-1883.
    26. Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
    27. Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
    28. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    29. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2019. "Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration," Applied Energy, Elsevier, vol. 255(C).
    30. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rami Mansouri & Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca, 2023. "Assessing Energy Performance and Environmental Impact of Low GWP Vapor Compression Chilled Water Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    2. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    3. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    4. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    5. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    6. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    7. Ghafoor, Abdul & Munir, Anjum, 2015. "Worldwide overview of solar thermal cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 763-774.
    8. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    9. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.
    10. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    11. Lee, Gawon & Choi, Hyung Won & Kang, Yong Tae, 2021. "Cycle performance analysis and experimental validation of a novel diffusion absorption refrigeration system using R600a/n-octane," Energy, Elsevier, vol. 217(C).
    12. Al-Ugla, A.A. & El-Shaarawi, M.A.I. & Said, S.A.M. & Al-Qutub, A.M., 2016. "Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1301-1310.
    13. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    14. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    15. Rodríguez-Muñoz, J.L. & Belman-Flores, J.M., 2014. "Review of diffusion–absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 145-153.
    16. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    17. Gao, Yu & He, Guogeng & Chen, Peidong & Zhao, Xin & Cai, Dehua, 2019. "Energy and exergy analysis of an air-cooled waste heat-driven absorption refrigeration cycle using R290/oil as working fluid," Energy, Elsevier, vol. 173(C), pages 820-832.
    18. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    19. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    20. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3610-:d:1129926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.