IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v198y2017icp173-179.html
   My bibliography  Save this article

Compact and efficient generator for low grade solar and waste heat driven absorption systems

Author

Listed:
  • Mortazavi, Mehdi
  • Schmid, Michael
  • Moghaddam, Saeed

Abstract

Absorption heat pumps offer a significant energy saving opportunity because of their capability to utilize low grade heat from solar thermal collectors, combustion systems and numerous other industrial applications. Reducing the required source temperature, size, and cost can greatly enhance the market potential of these systems. Here, a new compact plate-and-frame generator design is introduced with an approximately 3 times higher desorption rate at a substantially lower mass flux compared to conventional generators at only a 10°C wall superheat temperature. The new design utilizes a new surface structure to produce a uniformly thin solution film and to continuously interrupt the concentration and thermal boundary layers. At low wall temperatures, the desorption rate increased linearly with temperature. The desorption rate then exponentially increased due to a transition from direct diffusion desorption mode to nucleate boiling. The transition temperature was a strong function of the solution flow rate. A comparison of the desorption rate in the direct diffusion desorption mode with predictions of the laminar flow theory suggested that increasing solution flow rates results in mixing within the solution film. The high desorption rate at low mass flux enables significant reduction in the generator size and cost.

Suggested Citation

  • Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
  • Handle: RePEc:eee:appene:v:198:y:2017:i:c:p:173-179
    DOI: 10.1016/j.apenergy.2017.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730449X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mortazavi, Mehdi & Nasr Isfahani, Rasool & Bigham, Sajjad & Moghaddam, Saeed, 2015. "Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure," Energy, Elsevier, vol. 87(C), pages 270-278.
    2. Kaynakli, O., 2008. "The first and second law analysis of a lithium bromide/water coil absorber," Energy, Elsevier, vol. 33(5), pages 804-816.
    3. Lubis, Arnas & Jeong, Jongsoo & Saito, Kiyoshi & Giannetti, Niccolo & Yabase, Hajime & Idrus Alhamid, Muhammad & Nasruddin,, 2016. "Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates," Renewable Energy, Elsevier, vol. 99(C), pages 825-835.
    4. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    5. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    6. Agyenim, Francis, 2016. "The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems," Renewable Energy, Elsevier, vol. 87(P1), pages 229-239.
    7. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.
    8. Xiao, Fu & Ge, Gaoming & Niu, Xiaofeng, 2011. "Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 88(1), pages 143-149, January.
    9. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    10. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    11. Yang, Mina & Lee, Seung Yeob & Chung, Jin Taek & Kang, Yong Tae, 2017. "High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application," Applied Energy, Elsevier, vol. 187(C), pages 243-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Seung Yeob & Lee, Su Kyoung & Chung, Jin Taek & Kang, Yong Tae, 2018. "Numerical evaluation of a compact generator design for steam driven H2O/LiBr absorption chiller application," Energy, Elsevier, vol. 152(C), pages 512-520.
    2. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    3. Chugh, Devesh & Gluesenkamp, Kyle R. & Abu-Heiba, Ahmad & Alipanah, Morteza & Fazeli, Abdy & Rode, Richard & Schmid, Michael & Patel, Viral K. & Moghaddam, Saeed, 2019. "Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids," Applied Energy, Elsevier, vol. 239(C), pages 919-927.
    4. Lee, Su Kyoung & Lee, Jae Won & Lee, Hoseong & Chung, Jin Taek & Kang, Yong Tae, 2019. "Optimal design of generators for H2O/LiBr absorption chiller with multi-heat sources," Energy, Elsevier, vol. 167(C), pages 47-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    2. Chugh, Devesh & Gluesenkamp, Kyle & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling," Applied Energy, Elsevier, vol. 202(C), pages 746-754.
    3. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    4. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    5. Cola, Fabrizio & Hey, Jonathan & Romagnoli, Alessandro, 2018. "Characterization of the droplet formation phase for the H2OLiBr absorber: An analytical and experimental analysis," Applied Energy, Elsevier, vol. 222(C), pages 885-897.
    6. Michel, Benoit & Le Pierrès, Nolwenn & Stutz, Benoit, 2017. "Performances of grooved plates falling film absorber," Energy, Elsevier, vol. 138(C), pages 103-117.
    7. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    8. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    9. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    10. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    11. Mortazavi, Mehdi & Nasr Isfahani, Rasool & Bigham, Sajjad & Moghaddam, Saeed, 2015. "Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure," Energy, Elsevier, vol. 87(C), pages 270-278.
    12. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    13. Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).
    14. Zhang, Zi-Yang & Cao, Xiang & Yang, Zhi & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Modeling and experimental investigation of an advanced direct-expansion outdoor air dehumidification system," Applied Energy, Elsevier, vol. 242(C), pages 1600-1612.
    15. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
    16. Gluesenkamp, Kyle R. & Chugh, Devesh & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Efficiency analysis of semi-open sorption heat pump systems," Renewable Energy, Elsevier, vol. 110(C), pages 95-104.
    17. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    18. Lee, Seung Yeob & Lee, Su Kyoung & Chung, Jin Taek & Kang, Yong Tae, 2018. "Numerical evaluation of a compact generator design for steam driven H2O/LiBr absorption chiller application," Energy, Elsevier, vol. 152(C), pages 512-520.
    19. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    20. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:198:y:2017:i:c:p:173-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.