IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i4p1141-1148.html
   My bibliography  Save this article

Using engine exhaust gas as energy source for an absorption refrigeration system

Author

Listed:
  • Manzela, André Aleixo
  • Hanriot, Sérgio Morais
  • Cabezas-Gómez, Luben
  • Sodré, José Ricardo

Abstract

This work presents an experimental study of an ammonia-water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability and the impact of the absorption refrigeration system on engine performance, exhaust emissions, and power economy are evaluated. A production automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe. The engine was tested for 25%, 50%, 75% and wide-open throttle valve. The refrigerator reached a steady state temperature between 4 and 13 °C about 3 h after system start up, depending on engine throttle valve opening. The calculated exhaust gas energy availability suggests the cooling capacity can be highly improved for a dedicated system. Exhaust hydrocarbon emissions were higher when the refrigeration system was installed in the engine exhaust, but carbon monoxide emissions were reduced, while carbon dioxide concentration remained practically unaltered.

Suggested Citation

  • Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1141-1148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00308-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    2. Maidment, G. G. & Zhao, X. & Riffat, S. B., 2001. "Combined cooling and heating using a gas engine in a supermarket," Applied Energy, Elsevier, vol. 68(4), pages 321-335, April.
    3. Qin, Feng & Chen, Jiangping & Lu, Manqi & Chen, Zhijiu & Zhou, Yimin & Yang, Ke, 2007. "Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner," Renewable Energy, Elsevier, vol. 32(12), pages 2034-2052.
    4. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    5. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    6. Li, S. & Wu, J.Y., 2009. "Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system," Applied Energy, Elsevier, vol. 86(6), pages 958-967, June.
    7. Zhao, Yang & Shigang, Zhang & Haibe, Zhao, 2003. "Optimization study of combined refrigeration cycles driven by an engine," Applied Energy, Elsevier, vol. 76(4), pages 379-389, December.
    8. Jiangzhou, S & Wang, R.Z & Lu, Y.Z & Xu, Y.X & Wu, J.Y & Li, Z.H, 2003. "Locomotive driver cabin adsorption air-conditioner," Renewable Energy, Elsevier, vol. 28(11), pages 1659-1670.
    9. Huangfu, Y. & Wu, J.Y. & Wang, R.Z. & Xia, Z.Z. & Li, S., 2007. "Development of an experimental prototype of an integrated thermal management controller for internal-combustion-engine-based cogeneration systems," Applied Energy, Elsevier, vol. 84(12), pages 1356-1373, December.
    10. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    2. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    3. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    4. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    5. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    6. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    7. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    8. Sim, Lik Fang, 2014. "Numerical modelling of a solar thermal cooling system under arid weather conditions," Renewable Energy, Elsevier, vol. 67(C), pages 186-191.
    9. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    10. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    11. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    12. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    14. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    15. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    16. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    17. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    18. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    19. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    20. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2015. "Exergy analysis of thermal energy storage in a district energy application," Renewable Energy, Elsevier, vol. 74(C), pages 848-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1141-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.