IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v30y2014icp85-104.html
   My bibliography  Save this article

Progress in silica gel–water adsorption refrigeration technology

Author

Listed:
  • Wang, Dechang
  • Zhang, Jipeng
  • Tian, Xiaoliang
  • Liu, Dawei
  • Sumathy, K.

Abstract

The silica gel–water adsorption refrigeration has attracted much attention especially in the last two decades, due to its environmentally friendly refrigeration that can be powered by low grade heat source. In this paper, we reviewed the research about silica gel–water adsorption technology, cooling systems as well as heat pumps. The technological developments of silica gel–water adsorption refrigeration, including working pairs, heat and mass transfer, cycle and system design, simulation work, prototypes and applications, were discussed. The advantages of silica gel–water adsorption refrigeration technology as well as its disadvantages were elucidated. Finally, the prospect of this refrigeration method was analyzed. The weak heat and mass transfer performance of the adsorbent material was the main bottleneck of the silica gel–water adsorption refrigeration technology and resulting in large size, low performance and high cost.

Suggested Citation

  • Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
  • Handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:85-104
    DOI: 10.1016/j.rser.2013.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tangkengsirisin, Vichan & Kanzawa, Atsushi & Watanabe, Takayuki, 1998. "A solar-powered adsorption cooling system using a silica gel–water mixture," Energy, Elsevier, vol. 23(5), pages 347-353.
    2. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    3. Voyiatzis, Evangelos & Palyvos, J.A. & Markatos, Nikolaos-Christos, 2008. "Heat-exchanger design and switching-frequency effects on the performance of a continuous type solar adsorption chiller," Applied Energy, Elsevier, vol. 85(12), pages 1237-1250, December.
    4. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    5. Lior, Noam, 2012. "Sustainable energy development (May 2011) with some game-changers," Energy, Elsevier, vol. 40(1), pages 3-18.
    6. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    7. Dieng, A. O. & Wang, R. Z., 2001. "Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 313-342, December.
    8. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    9. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    10. Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
    11. Li, S. & Wu, J.Y., 2009. "Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system," Applied Energy, Elsevier, vol. 86(6), pages 958-967, June.
    12. Henninger, S.K. & Munz, G. & Ratzsch, K.-F. & Schossig, P., 2011. "Cycle stability of sorption materials and composites for the use in heat pumps and cooling machines," Renewable Energy, Elsevier, vol. 36(11), pages 3043-3049.
    13. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    14. Alam, K.C.A. & Kang, Y.T. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2003. "A novel approach to determine optimum switching frequency of a conventional adsorption chiller," Energy, Elsevier, vol. 28(10), pages 1021-1037.
    15. Saha, Bidyut B. & Koyama, Shigeru & Choon Ng, Kim & Hamamoto, Yoshinori & Akisawa, Atsushi & Kashiwagi, Takao, 2006. "Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller," Renewable Energy, Elsevier, vol. 31(13), pages 2076-2090.
    16. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    17. Chen, C.J. & Wang, R.Z. & Xia, Z.Z. & Kiplagat, J.K. & Lu, Z.S., 2010. "Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study," Applied Energy, Elsevier, vol. 87(8), pages 2673-2681, August.
    18. Saha, Bidyut B. & Akisawa, Atsushi & Kashiwagi, Takao, 1997. "Silica gel water advanced adsorption refrigeration cycle," Energy, Elsevier, vol. 22(4), pages 437-447.
    19. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    20. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Long & Wang, LiWei & Wang, RuZhu & Gao, Peng & Song, FenPing, 2014. "Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer," Energy, Elsevier, vol. 71(C), pages 377-387.
    2. Allouhi, A. & Kousksou, T. & Jamil, A. & Zeraouli, Y., 2014. "Modeling of a thermal adsorber powered by solar energy for refrigeration applications," Energy, Elsevier, vol. 75(C), pages 589-596.
    3. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Wang, Pengfei & Huo, Xiangyan & Wang, Ruzhu & Li, Tingxian, 2022. "Enhanced thermal conductivity and adsorption rate of zeolite 13X adsorbent by compression-induced molding method for sorption thermal battery," Energy, Elsevier, vol. 240(C).
    4. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    5. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).
    6. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    7. Kim, Dong-Seon & Chang, Young-Soo & Lee, Dae-Young, 2018. "Modelling of an adsorption chiller with adsorbent-coated heat exchangers: Feasibility of a polymer-water adsorption chiller," Energy, Elsevier, vol. 164(C), pages 1044-1061.
    8. Narayanan, Shankar & Kim, Hyunho & Umans, Ari & Yang, Sungwoo & Li, Xiansen & Schiffres, Scott N. & Rao, Sameer R. & McKay, Ian S. & Rios Perez, Carlos A. & Hidrovo, Carlos H. & Wang, Evelyn N., 2017. "A thermophysical battery for storage-based climate control," Applied Energy, Elsevier, vol. 189(C), pages 31-43.
    9. Dakkama, H.J. & Elsayed, A. & AL-Dadah, R.K. & Mahmoud, S.M. & Youssef, P., 2017. "Integrated evaporator–condenser cascaded adsorption system for low temperature cooling using different working pairs," Applied Energy, Elsevier, vol. 185(P2), pages 2117-2126.
    10. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
    11. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    12. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
    13. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    15. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
    16. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    2. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    3. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    4. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    5. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    6. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    7. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    8. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    9. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    10. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    11. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    12. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    13. Mitra, Sourav & Thu, Kyaw & Saha, Bidyut Baran & Dutta, Pradip, 2017. "Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system," Applied Energy, Elsevier, vol. 206(C), pages 507-518.
    14. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo & Aristov, Yuri I., 2014. "Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method," Applied Energy, Elsevier, vol. 113(C), pages 1244-1251.
    15. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    16. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    18. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    19. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    20. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:85-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.