IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3074-d1676221.html
   My bibliography  Save this article

A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft

Author

Listed:
  • Manuel Filipe

    (Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Frederico Afonso

    (Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Afzal Suleman

    (Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
    Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada)

Abstract

This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells, which will be studied at three technological levels, and batteries, also studied for four hybridization factors (X = 0, 0.05, 0.10, 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 °C. Taking advantage of this characteristic, two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1, which includes a vapor compression system (VCS), and A2, which omits it for a simpler design. The models were developed in MATLAB ® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2, due to the exclusion of the VCS, outperformed A1 in weight (10–23% reduction), energy consumption, and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized, and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0), but hybridization negated these benefits, significantly increasing emissions in pessimistic scenarios.

Suggested Citation

  • Manuel Filipe & Frederico Afonso & Afzal Suleman, 2025. "A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft," Energies, MDPI, vol. 18(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3074-:d:1676221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qian Wu & Zhiliang Dong & Xinfeng Zhang & Chaokai Zhang & Atif Iqbal & Jian Chen, 2025. "Towards More Efficient PEM Fuel Cells Through Advanced Thermal Management: From Mechanisms to Applications," Sustainability, MDPI, vol. 17(3), pages 1-26, January.
    2. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    2. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    3. Cai, Benan & Gao, Ruihang & Zhao, Yuqi & Wang, Rong & Che, Xunjian & Tian, Jiameng & Cai, Weihua, 2024. "Comprehensive performance evaluation and advanced exergy analysis of the low-temperature proton exchange membrane fuel cell and spray flash desalination coupled system," Energy, Elsevier, vol. 313(C).
    4. Cai, Benan & Wang, Rong & Gao, Ruihang & Che, Xunjian & Zhang, Zhongnong & Wang, Haijun & Cai, Weihua, 2025. "Performance analysis and multi-objective optimization of a combined seawater desalination and power system based on high-temperature PEMFC and externally fired gas turbine," Energy, Elsevier, vol. 321(C).
    5. Zhang, Xiaoqing & Ma, Xiao & Zhang, Zhaohuan & Du, Haoyu & Wu, Zhixuan & Li, Zhe & Shuai, Shijin, 2025. "Review and analysis of thermal management for proton exchange membrane fuel cell hybrid power system," Renewable Energy, Elsevier, vol. 244(C).
    6. Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.
    7. Yu, Yadong & Guo, Ying & Ma, Tieju, 2023. "Prioritizing the hydrogen pathways for fuel cell vehicles: Analysis of the life-cycle environmental impact, economic cost, and environmental efficiency," Energy, Elsevier, vol. 281(C).
    8. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    9. Wang, Hanbin & Luo, Chunhuan & Zhang, Rudan & Li, Yongsheng & Yang, Changchang & Li, Zexiang & Li, Jianhao & Li, Na & Li, Yiqun & Su, Qingquan, 2023. "Experiment and performance evaluation of an integrated low-temperature proton exchange membrane fuel cell system with an absorption chiller," Renewable Energy, Elsevier, vol. 215(C).
    10. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    11. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3074-:d:1676221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.