IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp754-764.html

Advances on air conditioning and heat pump system in electric vehicles – A review

Author

Listed:
  • Qi, Zhaogang

Abstract

There is a rising interest in electric vehicle׳s climate control system including cooling and heating. Electric vehicles (EVs, including hybrid electric vehicles and full electric vehicles) have inadequate waste heat to warm up the cabin and the climate control system has a very significant effect on the energy consumption efficiency and operating mileage. Heat pump (HP) is one approach for energy consumption efficiency improvement in EVs which can supply cooling and heating capacity. A literature review was performed on the vapor compression HP cycle design, performance characteristics, and challenges for variable working fluids for electric vehicles. The non-vapor compressor HP systems were also analyzed including the applications of magnetocaloric effect and thermoelectric effect. It seems heat pump system is a reasonable and feasible option in EV׳s climate control system if some essential issues could be solved. The mobile climate control systems based on magnetocaloric effect and thermoelectric effect could be the supplementary methods in future applications.

Suggested Citation

  • Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:754-764
    DOI: 10.1016/j.rser.2014.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114004900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    2. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    3. Miranda, Á.G. & Chen, T.S. & Hong, C.W., 2013. "Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles," Energy, Elsevier, vol. 59(C), pages 633-641.
    4. Romero Gómez, J. & Ferreiro Garcia, R. & Carbia Carril, J. & Romero Gómez, M., 2013. "A review of room temperature linear reciprocating magnetic refrigerators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 1-12.
    5. Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
    6. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    2. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    3. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    6. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    7. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    8. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    9. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    10. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    11. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    12. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    13. Jin, Rui & Li, Lei & Liang, Xiaoling & Zou, Xiang & Yang, Zeyuan & Ge, Shuzhi Sam & Huang, Haihong, 2024. "Energy-efficient design of the powertrain for mechanical-electro-hydraulic equipment via configuring multidimensional controllable variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    14. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    15. Guangli Zhou & Fei Huang & Wenbing Liu & Chunling Zhao & Yangkai Xiang & Hanbing Wei, 2022. "Comprehensive Control Strategy of Fuel Consumption and Emissions Incorporating the Catalyst Temperature for PHEVs Based on DRL," Energies, MDPI, vol. 15(20), pages 1-18, October.
    16. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    17. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    18. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
    20. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:754-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.