IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224038507.html
   My bibliography  Save this article

Investigation on the flow and heat transfer of a novel three-fluid heat exchanger based on TPMS

Author

Listed:
  • Wei, Xiaofei
  • Qian, Yejian
  • Li, Yao
  • Gong, Zhen
  • Yao, Mingyao
  • Qian, Duode
  • Hu, Biqian

Abstract

To reduce the number of heat exchangers (HEs) in thermal management systems and minimize the interactions between them, this study performs topology optimization based on the TPMS equation to design a three-fluid HE. Furthermore, fins are incorporated into the three-fluid HE. The influence mechanisms of the TPMS structure, solid volume fraction (Sv) and fin on the flow and heat transfer performance of the three-fluid HE are revealed. Results show that: (1) The three-fluid HE enables efficient heat exchange between each flow channel and air, maintaining high consistency in air temperature and velocity. (2) Compared to Gyroid heat exchanger (G-HE), Diamond heat exchanger (D-HE) exhibits a significantly higher heat transfer coefficient. The heat transfer coefficient of D-HE is approximately 3.1 times that of G-HE. (3) Increasing the Sv enhances the heat transfer performance of the HE, while also increasing flow resistance. When the Sv increases from 7 % to 13 %, the Nu and f on the cold side of the D-HE increase by 34 % and 19.6 %, respectively, while those for the G-HE increase by 13.2 % and 5.9 %. The three-fluid HE enhances the integration of the thermal management system and plays a crucial role in improving the reliability and stability of the system.

Suggested Citation

  • Wei, Xiaofei & Qian, Yejian & Li, Yao & Gong, Zhen & Yao, Mingyao & Qian, Duode & Hu, Biqian, 2025. "Investigation on the flow and heat transfer of a novel three-fluid heat exchanger based on TPMS," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224038507
    DOI: 10.1016/j.energy.2024.134072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Xiaofei & Qian, Yejian & Gong, Zhen & Yao, Mingyao & Meng, Shun & Zhang, Yu & Xu, Zefei & Qian, Duode & Zhang, Chao, 2024. "Experimental and numerical study on energy flow characteristics of a plug-in hybrid electric vehicle with integrated thermal management system," Energy, Elsevier, vol. 312(C).
    2. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    3. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    4. Ma, Jing & Sun, Yongfei & Zhang, Shiang, 2023. "Experimental investigation on energy consumption of power battery integrated thermal management system," Energy, Elsevier, vol. 270(C).
    5. Xu, Hong & Yu, Wenhui & Zhang, Yuan & Ma, Suli & Wu, Zhiyuan & Liu, Xiaohu, 2023. "Flow and heat transfer performance of bionic heat transfer structures with hybrid triply periodic minimal surfaces," Applied Energy, Elsevier, vol. 351(C).
    6. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    7. Wang, Jinghan & Chen, Kai & Zeng, Min & Ma, Ting & Wang, Qiuwang & Cheng, Zhilong, 2023. "Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    3. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Meng Li & Siyu Zheng & Mingshan Wei, 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, June.
    6. Kirttayoth Yeranee & Yu Rao, 2022. "A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS)," Energies, MDPI, vol. 15(23), pages 1-29, November.
    7. Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
    8. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. He, Liange & Gu, Zihan & Zhang, Yan & Jing, Haodong & Li, Pengpai, 2024. "Study on a novel thermal management system and heat recovery strategy of range extend electric vehicle," Renewable Energy, Elsevier, vol. 237(PA).
    10. Mohamad Ziad Saghir & Mohammad Yahya, 2024. "Convection Heat Transfer and Performance Analysis of a Triply Periodic Minimal Surface (TPMS) for a Novel Heat Exchanger," Energies, MDPI, vol. 17(17), pages 1-17, August.
    11. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    12. Singh, Dileep & Yu, Wenhua & France, David M. & Allred, Taylor P. & Liu, I-Han & Du, Wenchao & Barua, Bipul & Messner, Mark C., 2020. "One piece ceramic heat exchanger for concentrating solar power electric plants," Renewable Energy, Elsevier, vol. 160(C), pages 1308-1315.
    13. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).
    14. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    15. Yetik, Ozge & Engün, Semih & Kok, Baris & Karakoc, Tahir Hikmet, 2024. "Thermal management system of batteries using AlN reinforced TPMS-PCM composite material," Energy, Elsevier, vol. 313(C).
    16. Luigi Ventola & Matteo Fasano & Roberta Cappabianca & Luca Bergamasco & Francesca Clerici & Luciano Scaltrito & Eliodoro Chiavazzo & Pietro Asinari, 2020. "Convective Heat Transfer Enhancement through Laser-Etched Heat Sinks: Elliptic Scale-Roughened and Cones Patterns," Energies, MDPI, vol. 13(6), pages 1-16, March.
    17. Wei, Xiaofei & Qian, Yejian & Gong, Zhen & Yao, Mingyao & Meng, Shun & Zhang, Yu & Xu, Zefei & Qian, Duode & Zhang, Chao, 2024. "Experimental and numerical study on energy flow characteristics of a plug-in hybrid electric vehicle with integrated thermal management system," Energy, Elsevier, vol. 312(C).
    18. Hu, Kaibin & Wang, Xiaobo & Zhong, Shengquan & Lu, Cheng & Yu, Bocheng & Yang, Li & Rao, Yu, 2024. "Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches," Energy, Elsevier, vol. 289(C).
    19. Ju Yeong Kwon & Jung Kyung Kim & Hyunjin Lee & Dongchan Lee & Da Young Ju, 2023. "A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    20. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224038507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.