IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225010734.html
   My bibliography  Save this article

Hierarchical model predictive control for energy consumption regulation of industrial-scale circulation counter-flow paddy drying process

Author

Listed:
  • Li, Chengjie
  • Ren, Jiayang
  • Seth, Arpan
  • Zhang, Ye
  • Huang, Jianjiang
  • Li, Changyou
  • Cao, Yankai

Abstract

Paddy drying is an energy-intensive process that involves complex interaction such as inertia, nonlinearity, and random disturbances. Real-time energy consumption regulation is challenging due to the interplay of these factors. This study proposes a two-level hierarchical model predictive control (MPC) strategy for industrial-scale circulation counter-flow paddy drying process. The first-level optimizer encompasses an energetic optimizer, engineered to minimize energy consumption. This optimizer integrates drying mathematical and energetic models, as well as drying and ambient data. It operates at a low frequency of once every 180 s to handle computational complexity and slow-changing ambient conditions. To handle high-frequency disturbances, a second-level MPC operates at 2.25 s intervals, relying exclusively on drying mathematical model and tracking ideal trajectory established by first-level optimizer. Experiments show that first-level optimizer reduces total energy consumption by 12.8 % compared to previous proposed static ventilation strategy. Hierarchical MPC strategy consistently achieves lower relative average deviations (0.70 %, 0.79 %, and 0.81 %) from ideal trajectory under varying disturbance fluctuation rates (±60 %, ±80 %, and ±100 % respectively). These deviations are markedly lower (by 1.58 %, 15.67 %, and 19.52 % respectively) than those observed when applying first-level optimizer under noisy conditions. These findings underscore the enhanced energy-saving and disturbance-suppression capabilities of proposed hierarchical MPC strategy.

Suggested Citation

  • Li, Chengjie & Ren, Jiayang & Seth, Arpan & Zhang, Ye & Huang, Jianjiang & Li, Changyou & Cao, Yankai, 2025. "Hierarchical model predictive control for energy consumption regulation of industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225010734
    DOI: 10.1016/j.energy.2025.135431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, K. & Zhang, Y. & Wang, Y.F. & El-Kolaly, W. & Gao, M. & Sun, W. & Li, M., 2021. "Effects of drying variables on the characteristic of the hot air drying for gastrodia elata: Experiments and multi-variable model," Energy, Elsevier, vol. 222(C).
    2. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    3. Guan, Xiaokang & Wang, Yunfeng & Li, Ming & Li, Aimin & Zhou, Xiaoyan & Yang, Jie & Liang, Zhongwei, 2025. "Research on the performance of heat pump drying system with rock thermal energy storage," Energy, Elsevier, vol. 316(C).
    4. Panda, Brajesh Kumar & Mishra, Gayatri & Panigrahi, Shubham Subrot & Shrivastava, Shanker Lal, 2021. "Microwave-assisted parboiling of high moisture paddy: A comparative study based on energy utilization, process economy and grain quality with conventional parboiling," Energy, Elsevier, vol. 232(C).
    5. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    6. Nazghelichi, Tayyeb & Kianmehr, Mohammad Hossein & Aghbashlo, Mortaza, 2010. "Thermodynamic analysis of fluidized bed drying of carrot cubes," Energy, Elsevier, vol. 35(12), pages 4679-4684.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    8. Nejad, Alireza Mahdavi, 2021. "A new drying approach deploying solid-solid phase change material: A numerical study," Energy, Elsevier, vol. 232(C).
    9. Sami, Sourena & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad & Khutornaya, Julia & Sergienko, Olga, 2024. "Potential of an internal combustion engine as an energy supplier for the drying process: A thermo-economic analysis with multi-objective optimization," Energy, Elsevier, vol. 291(C).
    10. Lin, Dong & Dong, Yun & Ren, Zhiling & Zhang, Lijun & Fan, Yuling, 2024. "Hierarchical optimization for the energy management of a greenhouse integrated with grid-tied photovoltaic–battery systems," Applied Energy, Elsevier, vol. 374(C).
    11. Zhang, L.Z. & Jiang, L. & Xu, Z.C. & Zhang, X.J. & Fan, Y.B. & Adnouni, M. & Zhang, C.B., 2022. "Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology," Renewable Energy, Elsevier, vol. 198(C), pages 1267-1278.
    12. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    13. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2013. "Enhanced high energy efficient steam drying of algae," Applied Energy, Elsevier, vol. 109(C), pages 163-170.
    14. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    15. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    16. Das, Hirakh Jyoti & Saikia, Rituraj & Mahanta, Pinakeswar, 2023. "Thermo-economic assessment of bubbling fluidized bed paddy dryers," Energy, Elsevier, vol. 263(PC).
    17. Jin, Zhaoqiang & Yue, Rui & Ma, Zhenfa & Cheng, Shangheng & Khan, Mohammad Nauman & Nie, Lixiao, 2024. "Effect of water and nitrogen coupling on energy balance and production efficiency in rice production," Energy, Elsevier, vol. 288(C).
    18. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    2. Guan, Xiaokang & Wang, Yunfeng & Li, Ming & Li, Aimin & Zhou, Xiaoyan & Yang, Jie & Liang, Zhongwei, 2025. "Research on the performance of heat pump drying system with rock thermal energy storage," Energy, Elsevier, vol. 316(C).
    3. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    4. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    5. Yao, Muchi & Li, Ming & Zhang, Yi & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Deng, Zhihan & Xing, Tianyu & Zhu, Yinlong, 2025. "Performance, energy and exergy analysis of solar-assisted heat pump drying system with heat recovery: A comprehensive experimental study," Renewable Energy, Elsevier, vol. 244(C).
    6. Li, Mengjie & Liu, Ming & Xu, Can & Wang, Jinshi & Yan, Junjie, 2023. "Thermodynamic and sensitivity analyses on drying subprocesses of various evaporative dryers: A comparative study," Energy, Elsevier, vol. 284(C).
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    8. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    9. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    10. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    11. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    12. Qike Wei & Lihua Wang & Wei Jiang & Huaiyu Wang & Hao Zhang, 2022. "Discrete Heaped Model of Tobacco Strips Drying and Characteristics Analysis of Heat and Mass Transfer," Energies, MDPI, vol. 15(22), pages 1-16, November.
    13. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    14. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    15. Nandipamu, Tony Manoj Kumar & Chaturvedi, Sumit & Nayak, Prayasi & Dhyani, V.C. & Pachauri, S.P. & Shankhdhar, S.C. & Chandra, Subhash, 2025. "Energy-use audit and data envelopment analysis based optimization of tillage and residue management in rice-wheat system of Indo-Gangetic plains," Renewable Energy, Elsevier, vol. 238(C).
    16. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    17. Zahra Parhizi & Hamed Karami & Iman Golpour & Mohammad Kaveh & Mariusz Szymanek & Ana M. Blanco-Marigorta & José Daniel Marcos & Esmail Khalife & Stanisław Skowron & Nashwan Adnan Othman & Yousef Darv, 2022. "Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    18. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    19. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Hao, Kun & Zhang, Wei & Zhu, Shijiang & Peng, Youliang & Zhong, Yun & Jie, Feilong & Liu, Lihua & Gao, Yalin & Zhou, Lin & Liu, Chuang & Shen, Fangyuan, 2025. "Alternate partial root-zone irrigation combined with nitrogen fertilizer: An adaptive surge root irrigation and nitrogen strategy to improve apple yield, water-nitrogen use efficiency and fruit qualit," Agricultural Water Management, Elsevier, vol. 308(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225010734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.