IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v308y2025ics0378377425000101.html
   My bibliography  Save this article

Alternate partial root-zone irrigation combined with nitrogen fertilizer: An adaptive surge root irrigation and nitrogen strategy to improve apple yield, water-nitrogen use efficiency and fruit quality

Author

Listed:
  • Hao, Kun
  • Zhang, Wei
  • Zhu, Shijiang
  • Peng, Youliang
  • Zhong, Yun
  • Jie, Feilong
  • Liu, Lihua
  • Gao, Yalin
  • Zhou, Lin
  • Liu, Chuang
  • Shen, Fangyuan

Abstract

A reasonable combination of water and nitrogen application under appropriate and use of water-saving irrigation techniques is essential for improving the apple quality and yield in the mountainous areas of the Loess Plateau. This study, which was conducted from 2019 to 2020, utilized seven-year-old Hanfu apples as experimental material. Its focus was on three factors: irrigation method, irrigation level, and nitrogen application level. An L9(34) orthogonal design comprised of nine treatments was employed. The three irrigation methods were unilateral fixed surge root irrigation (U), alternating surge root irrigation (A), and bilateral fixed surge root irrigation (B). The irrigation levels were 85 %–100 % θf (I1), 70 %–85 % θf (I2), and 55 %–70 % θf (I3). The nitrogen application levels were 600 kg N ha−1 (N1), 400 kg N ha−1 (N2), and 200 kg N ha−1 (N3). In the study, soil water and nitrogen distribution, yield, fruit quality, water and nitrogen utilization efficiency, physiological and reproductive indicators and economic benefit of apples under various surge root irrigation treatments were analyzed, and their responses to water and nitrogen management were explored. Principal component was used to assess assessed apple quality and the game theory-based combinatorial weighting method (TOPSIS) was used to provide comprehensive evaluation of apple yield, quality, and water-nitrogen utilization efficiency. The results showed apple yield, quality, water and nitrogen utilization efficiency, chlorophyll content, fresh treetop growth, and photosynthesis all to be significantly affected by irrigation methods, irrigation levels, and nitrogen application rates. High water and fertilizer conditions led to the highest chlorophyll content, fresh treetop growth rate, net photosynthesis rate, transpiration rate, and leaf instantaneous water use efficiency. Alternate irrigation was found to even perform well in moderate water and nitrogen conditions and it enhanced water and nitrogen use efficiency quite significantly. The respective chlorophyll a and b contents in the T1 treatment (UI1N1) were 35.15 % and 38.02 % higher than those in the T3 treatment (UI3N3), and both photosynthesis and transpiration rates exhibited significant increases. The Mantel test showed there to be a significant correlation between apple yield, various quality indicators, net photosynthesis rate, and transpiration rate (P < 0.05). The highest yield, overall quality, comprehensive evaluation, index net return and rate of return was produced by treatment T4 (AI1N2), while IWUE, WUE, and NPFP peaked in treatments T6 (AI3N1) and T5 (AI2N3). Range analysis showed that treatment AI2N1 to have the highest yield and comprehensive evaluation index, while treatment AI2N2 showed no significant difference in comparison to AI2N1. In addition, treatment AI2N2 exhibited the best overall quality, with WUE peaking in treatment AI2N1 and NPFP peaking in treatment AI2N3. Therefore, in terms of improving quality, increasing yield, rate of return and enhancing water and nitrogen use efficiency, the water-nitrogen regulation model for apples in the mountainous areas of the Loess Plateau under surge root irrigation that is most optimal is a combination of alternate irrigation and moderate water-nitrogen application (AI2N2 treatment). These findings provide a theoretical basis for further scientific research on subsurface root irrigation technology and water-nitrogen management in the cultivation of apples on the Loess Plateau.

Suggested Citation

  • Hao, Kun & Zhang, Wei & Zhu, Shijiang & Peng, Youliang & Zhong, Yun & Jie, Feilong & Liu, Lihua & Gao, Yalin & Zhou, Lin & Liu, Chuang & Shen, Fangyuan, 2025. "Alternate partial root-zone irrigation combined with nitrogen fertilizer: An adaptive surge root irrigation and nitrogen strategy to improve apple yield, water-nitrogen use efficiency and fruit qualit," Agricultural Water Management, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000101
    DOI: 10.1016/j.agwat.2025.109296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    2. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    3. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Zhang, Qiang & Wu, Shen & Chen, Chu & Shu, Liang-Zuo & Zhou, Xiu-Jie & Zhu, Sheng-Nan, 2014. "Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 56-65.
    5. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    6. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.
    8. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    9. Sun, Guangzhao & Hu, Tiantian & Liu, Xiaogang & Peng, Youliang & Leng, Xianxian & Li, Yilin & Yang, Qiliang, 2022. "Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions," Agricultural Water Management, Elsevier, vol. 260(C).
    10. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Chai, Yuan & J. Pannell, David & G. Pardey, Philip, 2023. "Nudging farmers to reduce water pollution from nitrogen fertilizer," Food Policy, Elsevier, vol. 120(C).
    12. Jin, Zhaoqiang & Yue, Rui & Ma, Zhenfa & Cheng, Shangheng & Khan, Mohammad Nauman & Nie, Lixiao, 2024. "Effect of water and nitrogen coupling on energy balance and production efficiency in rice production," Energy, Elsevier, vol. 288(C).
    13. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Shen, Hongzheng & Gao, Yunhe & Sun, Kexin & Gu, Yuhui & Ma, Xiaoyi, 2023. "Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency," Agricultural Water Management, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Zheng, Shunsheng & Jiang, Shouzheng & Cui, Ningbo & Zhao, Lu & Gong, Daozhi & Wang, Yaosheng & Wu, Zongjun & Liu, Quanshan, 2023. "Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Sun, Guangzhao & Chen, Shuaihong & Zhang, Shaowu & Chen, Shaomin & Liu, Jie & He, Qiong & Hu, Tiantian & Zhang, Fucang, 2024. "Responses of leaf nitrogen status and leaf area index to water and nitrogen application and their relationship with apple orchard productivity," Agricultural Water Management, Elsevier, vol. 296(C).
    4. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Zhang, Wenjiang & Li, Hongping & Li, Xiaomeng & Lv, Min & Liu, Chunwei & Qiu, Rangjian & Wang, Zhihui, 2025. "Effects of deficit drip irrigation at different growth stages on citrus leaf physiology, fruit growth, yield, and water productivity in South China," Agricultural Water Management, Elsevier, vol. 307(C).
    5. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui, 2025. "Deficit irrigation enhances yield and water productivity of apples by inhibiting excessive vegetative growth and improving photosynthetic performance," Agricultural Water Management, Elsevier, vol. 307(C).
    8. Feng, Suwei & Shi, Chenchen & Wang, Peiyu & Chang, Sujing & Hu, Tiezhu & Ru, Zhengang, 2024. "Stem characteristics and yield of wheat is regulated to improve planting efficiency and reduce lodging risk by fertilizer rate and irrigation stage," Agricultural Water Management, Elsevier, vol. 306(C).
    9. Guo, Fu-Xing & Wang, Yan-Ping & Hou, Ting-Ting & Zhang, Lin-Sen & Mu, Yan & Wu, Fu-yong, 2021. "Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 244(C).
    10. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Zhang, Junwei & Xiang, Lingxiao & Liu, Yuxin & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Wuqiang & Wang, Xiaoyan & Li, Tianlai & Li, Jianming, 2024. "Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 295(C).
    12. Sun, Guangzhao & Hu, Tiantian & Liu, Xiaogang & Peng, Youliang & Leng, Xianxian & Li, Yilin & Yang, Qiliang, 2022. "Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Yu, Xuemei & Niu, Luqi & Zhang, Yuhui & Xu, Zijian & Zhang, Junwei & Zhang, Shuhui & Li, Jianming, 2024. "Vapour pressure deficit affects crop water productivity, yield, and quality in tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    14. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Chen, Shuaihong & Zhang, Shaowu & Li, Hui & Hu, Tiantian & Sun, Guangzhao & Cui, Xiaolu & Liu, Jie, 2024. "Optimizing irrigation and nitrogen management improves soil soluble nitrogen pools and reduces nitrate residues in a drip-fertigated apple orchard on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
    17. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Ali, Nawab & Dong, Younsuk & Lavely, Emily, 2024. "Impact of irrigation scheduling on yield and water use efficiency of apples, peaches, and sweet cherries: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.