IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v275y2023ics0378377422005479.html
   My bibliography  Save this article

Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest China

Author

Listed:
  • Kamran, Muhammad
  • Yan, Zhengang
  • Chang, Shenghua
  • Ning, Jiao
  • Lou, Shanning
  • Ahmad, Irshad
  • Ghani, Muhammad Usman
  • Arif, Muhammad
  • El Sabagh, Ayman
  • Hou, Fujiang

Abstract

In arid regions, supplemental irrigation and fertilization are the major driving factors for sustaining crop production. With the increasing water scarcity, rising fertilizer costs, and growing environmental concerns, identifying appropriate irrigation and nitrogen (N) amounts for simultaneously improving resource use efficiency and yield benefits is essential for sustainable crop production in arid regions. A two-year field study was conducted in the arid region of Northwest China to evaluate the effects of reduced irrigation and N treatments, including W80F75 (600 mm irrigation and 225 kg N ha−1), W80F50 (600 mm irrigation and 150 kg N ha−1), W60F75 (450 mm irrigation and 225 kg N ha−1), and W60F50 (450 mm irrigation and 150 kg N ha−1) on resource use efficiency, forage yield (DM), forage nutritive values, grain yield, and economic benefit of spring wheat in comparison with the farmers' management practice (W100F100, 750 mm irrigation and 300 kg N ha−1). Results indicated that moderately reduced irrigation and N (W80F75) significantly improved the forage nutritive quality, evident by high crude protein yield, relative feed value, digestible dry matter, dry matter intake, total digestible nutrients, and net energy for lactation. No significant difference in DM yield was observed between W100F100 and W80F75 treatments during both years. However, the grain yield for W80F75 treatment was 12.9 % greater than that of W100F100 in 2015. In addition, W80F75 treatment increased the resource use efficiency, net returns, and cost-befit ratios by reducing the input amounts while maintaining comparable yields to that of W100F100. However, the W80F50, W60F75, and W60F50 treatments significantly decreased the DM, grain yield, nutritive values, resource efficiency and economic benefits of spring wheat compared to W80F75. Therefore, the application of 600 mm irrigation and 225 kg N ha−1 to spring wheat is an appropriate management practice for reducing inputs while achieving high resource use efficiency, forage quality and economic benefits without compromising the yield of spring wheat in the arid region of Northwest China.

Suggested Citation

  • Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005479
    DOI: 10.1016/j.agwat.2022.108000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    2. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Kaplan, M. & Kara, K. & Unlukara, A. & Kale, H. & Buyukkilic Beyzi, S. & Varol, I.S. & Kizilsimsek, M. & Kamalak, A., 2019. "Water deficit and nitrogen affects yield and feed value of sorghum sudangrass silage," Agricultural Water Management, Elsevier, vol. 218(C), pages 30-36.
    6. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Lai, Xingfa & Yang, Xianlong & Wang, Zikui & Shen, Yuying & Ma, Longshuai, 2022. "Productivity and water use in forage-winter wheat cropping systems across variable precipitation gradients on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    10. Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
    11. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    12. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    13. Jalil Sheshbahreh, Marziyeh & Movahhedi Dehnavi, Mohsen & Salehi, Amin & Bahreininejad, Babak, 2019. "Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.)," Agricultural Water Management, Elsevier, vol. 213(C), pages 358-367.
    14. Ding, Zheli & Ali, Esmat F. & Elmahdy, Ahmed M. & Ragab, Khaled E. & Seleiman, Mahmoud F. & Kheir, Ahmed M.S., 2021. "Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
    7. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    8. Alina Petronela Alexoaei & Valentin Cojanu & Cristiana-Ioana Coman, 2021. "On Sustainable Consumption: The Implications of Trade in Virtual Water for the EU’s Food Security," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    9. Yingnan Wei & Han Ru & Xiaolan Leng & Zhijian He & Olusola O. Ayantobo & Tehseen Javed & Ning Yao, 2022. "Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    10. Wang, Han & Xiang, Youzhen & Zhang, Fucang & Tang, Zijun & Guo, Jinjin & Zhang, Xueyan & Hou, Xianghao & Wang, Haidong & Cheng, Minghui & Li, Zhijun, 2022. "Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Ishaque, Wajid & Osman, Raheel & Hafiza, Barira Shoukat & Malghani, Saadatullah & Zhao, Ben & Xu, Ming & Ata-Ul-Karim, Syed Tahir, 2023. "Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Cao, Xinchun & Li, Yueyao & Wu, Mengyang, 2022. "Irrigation water use and efficiency assessment coupling crop cultivation, commutation and consumption processes," Agricultural Water Management, Elsevier, vol. 261(C).
    13. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    14. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    16. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    20. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.