IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004316.html
   My bibliography  Save this article

Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region

Author

Listed:
  • Wang, Ning
  • Zhang, Tonghui
  • Cong, Anqi
  • Lian, Jie

Abstract

Water scarcity as well as soil degradation and environmental problems potentially caused by excessive application of chemical fertilizers are major challenges to agricultural production in semi-arid areas. It is crucial to explore a suitable and eco-friendly strategy to achieve sustainable production of maize with high crop water productivity and nitrogen use efficiency. Here, a two-year field experiment with three irrigation levels of W1 (220 mm), W2 (140 mm) and W3 (60 mm), and five fertilization types of no fertilizer (CK), chemical fertilizer (CF), bio-fertilizer combined with CF (CFB), organic fertilizer combined with 70% CF (CFO) and bio-fertilizer combined with CFO (CFOB) was conducted to investigate the effect on dry matter, N uptake and remobilization, grain yield, crop water productivity, nitrogen use efficiency and economic benefits of maize in 2021 and 2022. The results showed that the W2 and W3 decreased in the leaf area index, photosynthetic rate, dry matter accumulation, the maximum dry matter accumulation rate and actual crop evapotranspiration. Under W1 condition, the CFB improved the growth of maize, increased the dry matter and nitrogen accumulation and yield, with 8.1% and 7.4% higher than CF in 2021 and 2022, respectively. Under deficit irrigation (W2 and W3), CFOB significantly increased the leaf area index, photosynthetic rate, dry matter accumulation at later growth stage, in addition, CFOB increased the post-silking N uptake and the percentage in total N content, finally improved the grain yield with 23.8% and 22.8% under W2, 22.5% and 25.7% under W3 higher than that of the CF in 2021 and 2022, respectively. Irrigation and fertilizer showed a coupling effect on grain yield, crop water productivity, agronomy efficiency and nitrogen use efficiency. Overall, the CFOB under moderate deficit (W2) exhibited the highest water productivity, nitrogen use efficiency and economic benefits, as well as maintained the high yield, could be a promising approach to sustainable development of local maize.

Suggested Citation

  • Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004316
    DOI: 10.1016/j.agwat.2023.108566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.