IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1290-d746306.html
   My bibliography  Save this article

Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle

Author

Listed:
  • Gian Luca Patrone

    (Joint Research Centre, European Commission, 21027 Ispra, Italy)

  • Elena Paffumi

    (Joint Research Centre, European Commission, 21027 Ispra, Italy)

  • Marcos Otura

    (Joint Research Centre, European Commission, 21027 Ispra, Italy)

  • Mario Centurelli

    (Joint Research Centre, European Commission, 21027 Ispra, Italy)

  • Christian Ferrarese

    (Joint Research Centre, European Commission, 21027 Ispra, Italy)

  • Steffen Jahn

    (Honda R&D Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach, Germany)

  • Andreas Brenner

    (Honda R&D Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach, Germany)

  • Bernd Thieringer

    (AVL Thermal and HVAC GmbH, 74076 Heilbronn, Germany)

  • Daniel Braun

    (AVL Thermal and HVAC GmbH, 74076 Heilbronn, Germany)

  • Thomas Hoffmann

    (AVL Thermal and HVAC GmbH, 74076 Heilbronn, Germany)

Abstract

This article summarises the experimental testing campaign performed at the Joint Research Centre (JRC) on the demonstrator battery electric vehicle (BEV) of the European Union Horizon 2020 research project QUIET. The project, launched in October 2017, aimed at developing an improved and energy-efficient electric vehicle with increased driving range under real-world driving conditions, focusing on three areas: improved energy management, lightweight materials with enhanced thermal insulation properties, and improved safety and comfort. A heating, venting, and air conditioning (HVAC) system based on the refrigerant R290 (propane), a phase change material (PCM) thermal storage system, infrared heating panels in the near field of the passengers, lightweight materials for seat internal structures, and composite vehicle doors with a novel atomically precise manufacturing (APM) aluminium foam are all the breakthrough technologies installed on the QUIET demonstrator vehicle. All these innovative technologies allow the energetic request for cooling and heating the cabin of the demonstrator vehicle under different driving conditions and the weight of the vehicle components (e.g., doors, windshields, seats, heating, and air conditioning) to be reduced by about 28%, leading to an approximately 26% driving range increase under both hot (40 °C) and cold (−10 °C) weather conditions.

Suggested Citation

  • Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1290-:d:746306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joachim Baumeister & Jörg Weise & Sebastian Myslicki & Esther Kieseritzky & Götz Lindenberg, 2020. "PCM-Based Energy Storage System with High Power Output Using Open Porous Aluminum Foams," Energies, MDPI, vol. 13(23), pages 1-17, November.
    2. James Jeffs & Andrew McGordon & Alessandro Picarelli & Simon Robinson & Yashraj Tripathy & Widanalage Dhammika Widanage, 2018. "Complex Heat Pump Operational Mode Identification and Comparison for Use in Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-24, August.
    3. Anas Lahlou & Florence Ossart & Emmanuel Boudard & Francis Roy & Mohamed Bakhouya, 2020. "A Real-Time Approach for Thermal Comfort Management in Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-22, August.
    4. Myeong Hyeon Park & Sung Chul Kim, 2017. "Heating Performance Characteristics of High-Voltage PTC Heater for an Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-14, September.
    5. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    7. Daniele Basciotti & Dominik Dvorak & Imre Gellai, 2020. "A Novel Methodology for Evaluating the Impact of Energy Efficiency Measures on the Cabin Thermal Comfort of Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-16, July.
    8. Anas Lahlou & Florence Ossart & Emmanuel Boudard & Francis Roy & Mohamed Bakhouya, 2020. "Optimal Management of Thermal Comfort and Driving Range in Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-31, August.
    9. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Igor Gritsuk & Valerii Verbovskyi, 2023. "Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants," Energies, MDPI, vol. 16(17), pages 1-25, August.
    2. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    2. Ju Yeong Kwon & Jung Kyung Kim & Hyunjin Lee & Dongchan Lee & Da Young Ju, 2023. "A Comprehensive Overview of Basic Research on Human Thermal Management in Future Mobility: Considerations, Challenges, and Methods," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    3. Simone Lombardi & Manfredi Villani & Daniele Chiappini & Laura Tribioli, 2020. "Cooling System Energy Consumption Reduction through a Novel All-Electric Powertrain Traction Module and Control Optimization," Energies, MDPI, vol. 14(1), pages 1-22, December.
    4. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    5. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    6. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    8. Gianluca Valenti & Stefano Murgia & Ida Costanzo & Matteo Scarnera & Francesco Battistella, 2021. "Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    9. Leland Weiss & Ramanshu Jha, 2023. "Small-Scale Phase Change Materials in Low-Temperature Applications: A Review," Energies, MDPI, vol. 16(6), pages 1-24, March.
    10. Youssef NaitMalek & Mehdi Najib & Anas Lahlou & Mohamed Bakhouya & Jaafar Gaber & Mohamed Essaaidi, 2022. "A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    11. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    12. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    14. Myeong Hyeon Park & Sung Chul Kim, 2019. "Heating Performance Enhancement of High Capacity PTC Heater with Modified Louver Fin for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-14, July.
    15. James Jeffs & Truong Quang Dinh & Widanalage Dhammika Widanage & Andrew McGordon & Alessandro Picarelli, 2020. "Optimisation of Direct Battery Thermal Management for EVs Operating in Low-Temperature Climates," Energies, MDPI, vol. 13(22), pages 1-35, November.
    16. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.
    17. Karol Bagiński & Wojciech Credo & Jakub Wierciak & Sergiusz Łuczak, 2022. "Method of Reduction in Energy Consumption by the Drive Systems of a Mobile Device with a Controlled Gear Ratio," Energies, MDPI, vol. 15(7), pages 1-20, April.
    18. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.
    19. Xiaoxiao Ding & Weirong Zhang & Zhen Yang & Jiajun Wang & Lingtao Liu & Dalong Gao & Dongdong Guo & Jianyin Xiong, 2022. "Effect of Open-Window Gaps on the Thermal Environment inside Vehicles Exposed to Solar Radiation," Energies, MDPI, vol. 15(17), pages 1-18, September.
    20. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1290-:d:746306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.