IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3664-d578184.html
   My bibliography  Save this article

Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles

Author

Listed:
  • Gianluca Valenti

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4/A, 20156 Milano, Italy)

  • Stefano Murgia

    (Ing. Enea Mattei S.p.A, Strada Padana Superiore 307, Vimodrone, 20055 Milano, Italy)

  • Ida Costanzo

    (Ing. Enea Mattei S.p.A, Strada Padana Superiore 307, Vimodrone, 20055 Milano, Italy)

  • Matteo Scarnera

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4/A, 20156 Milano, Italy)

  • Francesco Battistella

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4/A, 20156 Milano, Italy)

Abstract

Compressed air is crucial on an electric or electrified heavy-duty vehicle. The objective of this work was to experimentally determine the performance parameters of the first prototype of an electric-driven sliding-vane air compressor, specifically designed for electric and electrified heavy-duty vehicles, during the transient conditions of cold start-ups. The transient was analyzed for different thermostatic temperatures: 0 °C, −10 °C, −20 °C, and −30 °C. The air compressor unit was placed in a climatic chamber and connected to the electric grid, the water-cooling loop, and the compressed air measuring and controlling rig. The required start-up time was greater the lower the thermostatic temperature, ranging from 30 min at 0 °C to 221 min at −30 °C and depending largely on the volume of the lubricant oil filled initially. The volume flow rate of the compressed air was lower than nominal at the beginning, but it showed a step increase well beyond nominal when the oil reached 50 °C and then decreased gently towards nominal, while the input power kept steady at nominal after a short initial peak. These facts must be considered when estimating the time and the energy required by the air compressor unit to fill up the compressed air tanks of the vehicles.

Suggested Citation

  • Gianluca Valenti & Stefano Murgia & Ida Costanzo & Matteo Scarnera & Francesco Battistella, 2021. "Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles," Energies, MDPI, vol. 14(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3664-:d:578184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jigu Seo & Junhong Park & Yunjung Oh & Sungwook Park, 2016. "Estimation of Total Transport CO 2 Emissions Generated by Medium- and Heavy-Duty Vehicles (MHDVs) in a Sector of Korea," Energies, MDPI, vol. 9(8), pages 1-13, August.
    2. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    3. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    3. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    4. Timo Busch & Michael L. Barnett & Roger Leonard Burritt & Benjamin W. Cashore & R. Edward Freeman & Irene Henriques & Bryan W. Husted & Rajat Panwar & Jonatan Pinkse & Stefan Schaltegger & Jeff York, 2024. "Moving beyond “the” business case: How to make corporate sustainability work," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 776-787, February.
    5. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    6. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    7. Maria Giuffrida & Riccardo Mangiaracina, 2020. "Green Practices for Global Supply Chains in Diverse Industrial, Geographical, and Technological Settings: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    8. Gull, Muhammad Shuzub & Khalid, Muhammad & Arshad, Naveed, 2024. "Multi-objective optimization of battery swapping station to power up mobile and stationary loads," Applied Energy, Elsevier, vol. 374(C).
    9. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    10. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
    11. Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    13. Tomasz Konewka & Joanna Bednarz & Tomasz Czuba, 2021. "Building a Competitive Advantage for Indonesia in the Development of the Regional EV Battery Chain," Energies, MDPI, vol. 14(21), pages 1-13, November.
    14. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    15. Hafize Nurgul Durmus Senyapar & Murat Akil & Emrah Dokur, 2023. "Adoption of Electric Vehicles: Purchase Intentions and Consumer Behaviors Research in Turkey," SAGE Open, , vol. 13(2), pages 21582440231, June.
    16. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    17. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    18. Harsh, Pratik & Das, Debapriya, 2022. "Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    20. Tao Zhang & Ningyuan Guo & Xiaoxia Sun & Jie Fan & Naifeng Yang & Junjie Song & Yuan Zou, 2021. "A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles," Sustainability, MDPI, vol. 13(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3664-:d:578184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.