E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhu, Weidong & Zhang, Tianjiao & Wu, Yong & Li, Shaorong & Li, Zhimin, 2022. "Research on optimization of an enterprise financial risk early warning method based on the DS-RF model," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Yali Cao & Yue Shao & Hongxia Zhang, 2022. "Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm," Electronic Commerce Research, Springer, vol. 22(1), pages 21-36, March.
- Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
- Yao-Zhi Xu & Jian-Lin Zhang & Ying Hua & Lin-Yue Wang, 2019. "Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
- Jianrong Yao & Yanqin Pan & Shuiqing Yang & Yuangao Chen & Yixiao Li, 2019. "Detecting Fraudulent Financial Statements for the Sustainable Development of the Socio-Economy in China: A Multi-Analytic Approach," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
- Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
- Xun Huang & Cheng-Zhao Zhang & Jia Yuan, 2020. "Predicting Extreme Financial Risks on Imbalanced Dataset: A Combined Kernel FCM and Kernel SMOTE Based SVM Classifier," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 187-216, June.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Yumei He & Xinyi Xu & Yuewen Cai & Mengya Cheng, 2022. "An evaluation of the effectiveness of three early-warning models on financial indexes," Applied Economics Letters, Taylor & Francis Journals, vol. 29(20), pages 1880-1884, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
- repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
- Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
- Yao-Zhi Xu & Jian-Lin Zhang & Ying Hua & Lin-Yue Wang, 2019. "Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
- Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
- Yuanying Chi & Mingjian Yan & Yuexia Pang & Hongbo Lei, 2022. "Financial Risk Assessment of Photovoltaic Industry Listed Companies Based on Text Mining," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
- Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
- Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
- Swami, Onkar Shivraj & Vishnu Kumar, N. Arun & Baruah, Palash, 2012. "Determinants of the exit decision of foreign banks in India," MPRA Paper 38722, University Library of Munich, Germany.
- Zeineb Affes & Rania Hentati-Kaffel, 2016.
"Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis,"
Documents de travail du Centre d'Economie de la Sorbonne
16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01281948, HAL.
- Ijaz Hussain, 2013. "Estimating Firms’ Vulnerability to Short-Term Financing Shocks: The Case of Foreign Exchange Companies in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 18(2), pages 147-163, July-Dec.
- Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
- Polsiri, Piruna & Jiraporn, Pornsit, 2012. "Political connections, ownership structure, and financial institution failure," Journal of Multinational Financial Management, Elsevier, vol. 22(1), pages 39-53.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
More about this item
Keywords
financial risk; FA; swarm intelligence optimization algorithm; LSTM; deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5882-:d:1109718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.