IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5574-d1104104.html
   My bibliography  Save this article

Dynamic Evaluation of Energy Carbon Efficiency in the Logistics Industry Based on Catastrophe Progression

Author

Listed:
  • Xiaohong Yin

    (School of Economics and Management, Liaoning University of Technology, Jinzhou 121000, China)

  • Yufei Wu

    (School of Economics and Management, Liaoning University of Technology, Jinzhou 121000, China)

  • Qiang Liu

    (School of Economics and Management, Liaoning University of Technology, Jinzhou 121000, China)

Abstract

The logistics industry has an irreplaceable role in promoting Chinese economic development, and its carbon emissions have become a hot topic of academic research. However, more research needs to be conducted on this. This study is based on establishing an evaluation index system for the efficiency of energy carbon emissions in the Chinese logistics industry. The catastrophe progression method was used to evaluate this statically. A dynamic evaluation model was also established based on the characteristics of fuzzy rewards and punishments. The results showed that the static values in the southeastern provinces of China were always between 0.9 and 1, and there was a significant increase in the dynamic values under the fuzzy reward and punishment scenario. Provinces in the southwest fluctuated between 0.8 and 0.95, while the dynamic values did not increase much. In the northern provinces, the static assessment values were consistently between 0.7 and 0.9, while the dynamic values were decreasing. It is therefore important to reward provinces with high static assessment values and penalize those with low static assessment values. The perspective of the characteristics of fuzzy rewards and punishments is also essential for fair and equitable management, reward and punishment in the different provinces in the study.

Suggested Citation

  • Xiaohong Yin & Yufei Wu & Qiang Liu, 2023. "Dynamic Evaluation of Energy Carbon Efficiency in the Logistics Industry Based on Catastrophe Progression," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5574-:d:1104104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    2. Syed Abdul Rehman Khan & Danish Iqbal Godil & Zhang Yu & Farwa Abbas & Muhammad Asif Shamim, 2022. "Adoption of renewable energy sources, low‐carbon initiatives, and advanced logistical infrastructure—an step toward integrated global progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 275-288, February.
    3. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Md. Anisul Islam & Yuvraj Gajpal, 2021. "Optimization of Conventional and Green Vehicles Composition under Carbon Emission Cap," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    5. Xiao-qing Lei & Jia-jia Yang & Jian-bo Zou & Mei-er Zhuang, 2020. "Research on the Impact of Logistics Technology Progress on Employment Structure Based on DEA-Malmquist Method," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, September.
    6. Sufyanullah, Khan & Ahmad, Khan Arshad & Sufyan Ali, Muhammad Abu, 2022. "Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions - Using ARDL bound testing approach," Energy Policy, Elsevier, vol. 164(C).
    7. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    8. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    9. Ana Beatriz Lopes de Sousa Jabbour & Charbel Jose Chiappetta Jabbour & Joseph Sarkis & Hengky Latan & David Roubaud & Moacir Godinho Filho & Maciel Queiroz, 2021. "Fostering low-carbon production and logistics systems: framework and empirical evidence," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7106-7125, December.
    10. Harald Winkler, 2020. "Putting equity into practice in the global stocktake under the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 20(1), pages 124-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    2. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    3. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    4. Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.
    5. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    6. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    7. Haisheng Chen & Manhong Shen, 2022. "Do Central Inspections of Environmental Protection Affect the Efficiency of the Green Economy? Evidence from China’s Yangtze River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    8. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    9. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    10. Wentao Lu & Guixiang Zhang, 2023. "Green development efficiency of urban agglomerations in a developing country: evidence from Beijing-Tianjin-Hebei in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6939-6962, July.
    11. Zhangsheng Liu & Xiaolu Zhang & Liuqingqing Yang & Yinjie Shen, 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    12. Chunhua Xin & Xiufeng Lai, 2022. "Does the Environmental Information Disclosure Promote the High-Quality Development of China’s Resource-Based Cities?," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    13. Yunlong Liu & Leiyu Chen & Chengfeng Huang, 2022. "Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    14. Yongke Yuan & Yun Guo & Qian Xiao & Mengwan Zhang & Jialin Li & Yuanying Chi, 2023. "The Evaluation of Energy Efficiency and its Decoupling from Economic Growth under the Carbon Peak Target," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 13(6), pages 1-12.
    15. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    16. Wei Zhang & Jing Cheng & Xuemeng Liu & Zhangrong Zhu, 2023. "Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5511-5537, June.
    17. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    18. Chuanxin Xia & Yu Zhao & Qingxia Zhao & Shuo Wang & Ning Zhang, 2022. "Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    19. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    20. Pei Zhao & Junhua Guo & Yang Wang, 2023. "How Does the Digital Economy Affect Green Development?—Evidence from 284 Cities in China," Sustainability, MDPI, vol. 15(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5574-:d:1104104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.