IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1734-d1037940.html
   My bibliography  Save this article

How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?

Author

Listed:
  • Hasan Yildizhan

    (Department of Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey)

  • Cihan Yıldırım

    (Vocational School, Ağrı İbrahim Çeçen University, Ağrı 04100, Turkey)

  • Shiva Gorjian

    (Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran P.O. Box 14115-111, Iran)

  • Arman Ameen

    (Department of Building Engineering, Energy Systems and Sustainability Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

Abstract

Utilization of renewable energy in the Turkish industrial sector is becoming more important nowadays. The tendency toward renewable energy can be clearly seen with newly planned energy investments. The energy appearance of the Turkish industrial sector for past two decades and ongoing energy projects are discussed in this study with the help of sustainability indicators. The sustainability index is based on advanced exergy analysis and shows the environmental impact of production processes and measures the transformation of energy resources in the Turkish industrial sector. This index was approximately 2.03 in 2000 and it improved to 2.25 in 2008, and then remained constant with minor fluctuations until 2019. Depending on the fulfillment of the continuing fossil, nuclear, and recommended renewable energy investment scenarios, the sustainability index may change to between 1.96 and 2.17 by 2023. None of the ongoing investments will make a major improvement in the sustainability of the industrial sector; therefore, a major shift toward the use of more renewable energy is urgently needed. Establishing solar or wind energy microgrids plants may improve the sustainability indicators drastically, therefore, encouragement of their investments is very important.

Suggested Citation

  • Hasan Yildizhan & Cihan Yıldırım & Shiva Gorjian & Arman Ameen, 2023. "How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1734-:d:1037940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    2. Koroneos, Christopher J. & Nanaki, Evanthia A. & Xydis, George A., 2011. "Exergy analysis of the energy use in Greece," Energy Policy, Elsevier, vol. 39(5), pages 2475-2481, May.
    3. Stamatios Ntanos & Michalis Skordoulis & Grigorios Kyriakopoulos & Garyfallos Arabatzis & Miltiadis Chalikias & Spyros Galatsidas & Athanasios Batzios & Apostolia Katsarou, 2018. "Renewable Energy and Economic Growth: Evidence from European Countries," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    4. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    5. Dani Rodrik, 2012. "The Turkish Economy after the Global Financial Crisis," Ekonomi-tek - International Economics Journal, Turkish Economic Association, vol. 1(1), pages 41-61, January.
    6. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    7. Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
    8. Mohammad Hosein Mohammadnezami & Mehdi Ali Ehyaei & Marc A. Rosen & Mohammad Hossein Ahmadi, 2015. "Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    9. Michalis Skordoulis & Grigorios Kyriakopoulos & Stamatiοs Ntanos & Spyros Galatsidas & Garyfallos Arabatzis & Miltiadis Chalikias & Petros Kalantonis, 2022. "The Mediating Role of Firm Strategy in the Relationship between Green Entrepreneurship, Green Innovation, and Competitive Advantage: The Case of Medium and Large-Sized Firms in Greece," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    10. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    11. Utlu, Zafer & Hepbasli, Arif, 2007. "Assessment of the Turkish utility sector through energy and exergy analyses," Energy Policy, Elsevier, vol. 35(10), pages 5012-5020, October.
    12. Mikati, M. & Santos, M. & Armenta, C., 2013. "Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system," Renewable Energy, Elsevier, vol. 57(C), pages 587-593.
    13. Yang, Lu, 2022. "Idiosyncratic information spillover and connectedness network between the electricity and carbon markets in Europe," Journal of Commodity Markets, Elsevier, vol. 25(C).
    14. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    15. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    16. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    17. Reza Alayi & Farhad Zishan & Seyed Reza Seyednouri & Ravinder Kumar & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Optimal Load Frequency Control of Island Microgrids via a PID Controller in the Presence of Wind Turbine and PV," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    18. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sıdıka Ece Yılmaz & Hasan Yildizhan & Cihan Yıldırım & Chuang-Yao Zhao & João Gomes & Tarik Alkharusi, 2023. "The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 15(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmanur Uçal & Hasan Yildizhan & Arman Ameen & Zafer Erbay, 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    2. Franck Armel Talla Konchou & Yemeli Wenceslas Koholé & Ghislain Tchuen & Réné Tchinda, 2023. "Energy, exergy and sustainability assessment of Cameroon residential sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12439-12465, November.
    3. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    4. Jieqiong Wang & Shichao Hu & Ziyi Zhang, 2023. "Does Environmental Regulation Promote Eco-Innovation Performance of Manufacturing Firms?—Empirical Evidence from China," Energies, MDPI, vol. 16(6), pages 1-18, March.
    5. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    6. Yang, Lu, 2023. "Oil price bubbles: The role of network centrality on idiosyncratic sovereign risk," Resources Policy, Elsevier, vol. 82(C).
    7. Andreas Errikos Delegkos & Michalis Skordoulis & Petros Kalantonis & Aggelia Xanthopoulou, 2022. "Integrated Reporting and Value Relevance in the Energy Sector: The Case of European Listed Firms," Energies, MDPI, vol. 15(22), pages 1-13, November.
    8. Lu Yang & Lei Yang & Xue Cui, 2023. "Sovereign default network and currency risk premia," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    9. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    10. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    11. Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
    12. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    13. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    14. Ismael Pérez-Franco & Agustín García-García & Juan J. Maldonado-Briegas, 2020. "Energy Transition Towards a Greener and More Competitive Economy: The Iberian Case," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    15. Yingce Yang & Junjie Guo & Ruihong He, 2023. "The Asymmetric Impact of the Oil Price and Disaggregate Shocks on Economic Policy Uncertainty: Evidence From China," SAGE Open, , vol. 13(2), pages 21582440231, June.
    16. Belqasem Aljafari & Jasmin Pamela Stephenraj & Indragandhi Vairavasundaram & Raja Singh Rassiah, 2022. "Steady State Modeling and Performance Analysis of a Wind Turbine-Based Doubly Fed Induction Generator System with Rotor Control," Energies, MDPI, vol. 15(9), pages 1-19, May.
    17. Xiaojuan He & Dervis Kirikkaleli & Melike Torun & Zecheng Li, 2021. "Modeling Economic Risk in the QISMUT Countries: Evidence From Nonlinear Cointegration Tests," SAGE Open, , vol. 11(4), pages 21582440211, October.
    18. Yuan, Di & Li, Sufang & Li, Rong & Zhang, Feipeng, 2022. "Economic policy uncertainty, oil and stock markets in BRIC: Evidence from quantiles analysis," Energy Economics, Elsevier, vol. 110(C).
    19. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    20. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1734-:d:1037940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.