IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14497-d1253931.html
   My bibliography  Save this article

Evaluating Compound Flooding Risks in Coastal Cities under Climate Change—The Maputo Case Study, in Mozambique

Author

Listed:
  • José Pedro Matos

    (CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal)

  • Filipa Ferreira

    (CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
    HIDRA, Hidráulica e Ambiente Lda., Av. Defensores de Chaves, 31, 1º Esq., 1000-111 Lisboa, Portugal)

  • Diogo Mendes

    (CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal)

  • José Saldanha Matos

    (CERIS—Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
    HIDRA, Hidráulica e Ambiente Lda., Av. Defensores de Chaves, 31, 1º Esq., 1000-111 Lisboa, Portugal)

Abstract

Flooding is a truly ubiquitous problem. Today, it puts an estimated 1.81 billion people at risk. Floods particularly affect coastal cities, where it is expected that the damage associated with inundations exceed the staggering value of USD 50 billion by 2050. Indeed, the risk associated with flooding in coastal cities is increasing due to three unequivocal trends: growing population in large urban centres, sea level rise, and increased intensity of extreme weather events. Planning and implementation of storm drainage systems in large cities is a complex, long, and expensive process. Typically, the effective lifespan of storm drainage systems may extend to nearly a century. Accordingly, such systems should be designed for the future, not the present. Addressing these important challenges, the paper evaluates flood risks in the coastal city of Maputo, in Mozambique. Results show that, although downtown Maputo is not particularly exposed to compound flooding, accounting for rainfall-tide events is essential to understand flooding in the area and evaluating the performance of the storm drainage system.

Suggested Citation

  • José Pedro Matos & Filipa Ferreira & Diogo Mendes & José Saldanha Matos, 2023. "Evaluating Compound Flooding Risks in Coastal Cities under Climate Change—The Maputo Case Study, in Mozambique," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14497-:d:1253931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Jijian Lian & Hongshi Xu & Kui Xu & Chao Ma, 2017. "Optimal management of the flooding risk caused by the joint occurrence of extreme rainfall and high tide level in a coastal city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 183-200, October.
    3. James E. Neumann & Kerry A. Emanuel & Sai Ravela & Lindsay C. Ludwig & Caroleen Verly, 2013. "Assessing the Risk of Cyclone-Induced Storm Surge and Sea Level Rise in Mozambique," WIDER Working Paper Series wp-2013-036, World Institute for Development Economic Research (UNU-WIDER).
    4. Jun Rentschler & Melda Salhab & Bramka Arga Jafino, 2022. "Flood exposure and poverty in 188 countries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    2. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    3. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    4. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    5. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    6. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    7. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    9. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    10. Nazam Maqbool, 2023. "Impact of Climate Change on Water in Pakistan (Policy)," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 62(4), pages 605-616.
    11. Cheng He & Yixiang Zhu & Lu Zhou & Jovine Bachwenkizi & Alexandra Schneider & Renjie Chen & Haidong Kan, 2024. "Flood exposure and pregnancy loss in 33 developing countries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    14. Fanzhang Zeng & Sifan Jin & Lei Ye & Xuezhi Gu & Jun Guo, 2023. "Analysis of flood conveyance capacity of small- and medium-sized river and flood managements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 447-467, March.
    15. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    16. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    17. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    18. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    19. Jim Gower, 2015. "A sea surface height control dam at the Strait of Gibraltar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2109-2120, September.
    20. Jiake Li & Jiayu Gao & Ning Li & Yutong Yao & Yishuo Jiang, 2023. "Risk Assessment and Management Method of Urban Flood Disaster," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2001-2018, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14497-:d:1253931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.