Insights into Pyrolysis Kinetics, Thermodynamics, and the Reaction Mechanism of Wheat Straw for Its Resource Utilization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Thanapal, Siva Sankar & Annamalai, Kalyan & Sweeten, John M. & Gordillo, Gerardo, 2012. "Fixed bed gasification of dairy biomass with enriched air mixture," Applied Energy, Elsevier, vol. 97(C), pages 525-531.
- Sandhya Kuruvalan Vijayan & Mahmud Arman Kibria & Md Hemayet Uddin & Sankar Bhattacharya, 2021. "Pretreatment of Automotive Shredder Residues, Their Chemical Characterisation, and Pyrolysis Kinetics," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
- Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
- Frederico G. Fonseca & Andrés Anca-Couce & Axel Funke & Nicolaus Dahmen, 2022. "Challenges in Kinetic Parameter Determination for Wheat Straw Pyrolysis," Energies, MDPI, vol. 15(19), pages 1-26, October.
- Muhammad Aon & Zeshan Aslam & Shahid Hussain & Muhammad Amjad Bashir & Muhammad Shaaban & Sajid Masood & Sidra Iqbal & Muhammad Khalid & Abdur Rehim & Walid F. A. Mosa & Lidia Sas-Paszt & Samy A. Mare, 2023. "Wheat Straw Biochar Produced at a Low Temperature Enhanced Maize Growth and Yield by Influencing Soil Properties of Typic calciargid," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
- Aleksandra Petrovič & Sabina Vohl & Tjaša Cenčič Predikaka & Robert Bedoić & Marjana Simonič & Irena Ban & Lidija Čuček, 2021. "Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar," Sustainability, MDPI, vol. 13(17), pages 1-34, August.
- Andreas Dyreborg Martin, 2023. "Co-Development of a Tool to Aid the Assessment of Biomass Potential for Sustainable Resource Utilization: An Exploratory Study with Danish and Swedish Municipalities," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
- Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haiyu Meng & Heng Yang & Zhiqiang Wu & Danting Li & Zhe Wang & Dongqi Wang & Hui Wang & Huaien Li & Jiake Li, 2024. "Co-Pyrolysis of Mushroom Residue Blended with Pine Sawdust/Wheat Straw for Sustainable Utilization of Biomass Wastes: Thermal Characteristics, Kinetic/Thermodynamic Analysis, and Structure Evolution o," Sustainability, MDPI, vol. 16(15), pages 1-30, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nishu, & Tang, Songbiao & Mei, Wenjie & Yang, Juntao & Wang, Zhongming & Yang, Gaixiu, 2024. "Effect of anaerobic digestion pretreatment on pyrolysis of distillers’ grain: Product distribution, kinetics and thermodynamics analysis," Renewable Energy, Elsevier, vol. 221(C).
- AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
- Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
- Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
- Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
- Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
- Muhammad U. Hanif & Mohammed Zwawi & Sergio C. Capareda & Hamid Iqbal & Mohammed Algarni & Bassem F. Felemban & Ali Bahadar & Adeel Waqas, 2020. "Product Distribution and Characteristics of Pyrolyzing Microalgae ( Nannochloropsis oculata ), Cotton Gin Trash, and Cattle Manure as a Cobiomass," Energies, MDPI, vol. 13(4), pages 1-10, February.
- Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
- Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
- Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
- Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
- Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
- Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
- Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
- Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2019. "Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes," Renewable Energy, Elsevier, vol. 142(C), pages 147-157.
- Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
- Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
- Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
- Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
More about this item
Keywords
pyrolysis behavior; thermogravimetric analysis; kinetics and thermodynamics; reaction mechanism; wheat straw;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12536-:d:1219804. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.