IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032498.html
   My bibliography  Save this article

Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures

Author

Listed:
  • Hu, Mao
  • Guo, Kai
  • Zhou, Haiqin
  • Shen, Fei
  • Zhu, Wenkun
  • Dai, Lichun

Abstract

Swine manure (SM) is one of the dominant livestock wastes in China. Pyrolysis is increasingly needed in valorizing SM into diverse products. However, little is known about the pyrolysis characteristics for SM. The results showed that the common-used solid-liquid separation in the SM management chain changed its physicochemical properties and pyrolysis characteristics. Specifically, the average activation energies (Ea) calculated by Flynn-Wall-Ozawa, Kissenger-Akahira-Sunose and Starink models for SM collected in pigsty (SM-A) were 184.70, 181.34 and 181.73 kJ/mol (R2 > 0.9) at conversion rate (a) = 0.2–0.7, respectively, which were increased by > 30 kJ/mol for solid-liquid separated SM (SM-B). Top pre-exponential values (A) for SM-A were also lower than these for SM-B. The ΔG and ΔS were decreased with the progressing of SM-A pyrolysis, while these for SM-B pyrolysis showed increases. Furthermore, SM-A pyrolysis produced more gas species than SM-B, which was more reactive during pyrolysis. Finally, this study suggested that although SM could be a potential energy source through the conversion by pyrolysis, attention should be paid on the impacts of manure management chain on SM pyrolysis.

Suggested Citation

  • Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032498
    DOI: 10.1016/j.energy.2023.129855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    4. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
    5. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    6. Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
    7. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    8. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    9. Huang, Zhen & Deng, Zhengbing & Chen, Dezhen & He, Fang & Liu, Shuai & Zhao, Kun & Wei, Guoqiang & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2017. "Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier," Energy, Elsevier, vol. 141(C), pages 1836-1844.
    10. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    2. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    4. Chen, Zhiyun & Liu, Jingyong & Chen, Huashan & Ding, Ziyi & Tang, Xiaojie & Evrendilek, Fatih, 2022. "Oxy-fuel and air atmosphere combustions of Chinese medicine residues: Performances, mechanisms, flue gas emission, and ash properties," Renewable Energy, Elsevier, vol. 182(C), pages 102-118.
    5. Sun, Ce & Tan, Haiyan & Zhang, Yanhua, 2023. "Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil," Renewable Energy, Elsevier, vol. 205(C), pages 851-863.
    6. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    7. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    8. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    9. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    10. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    11. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    12. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    13. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    14. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    15. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    16. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    17. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    18. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    20. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.