IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6691-d1242576.html
   My bibliography  Save this article

Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler

Author

Listed:
  • Wojciech Rzeźnik

    (Institute of Environmental Engineering and Building Installations, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland)

  • Ilona Rzeźnik

    (Institute of Environmental Engineering and Building Installations, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland)

  • Paulina Mielcarek-Bocheńska

    (Institute of Technology and Life Sciences-National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland)

  • Mateusz Urbański

    (Student of Environmental Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

One of the aims of the environmental and energy policy of the European Union is to reduce the emission of air pollutants, primarily from heat and electricity production, e.g., using renewable energy sources. An example of such a fuel is agricultural biomass including animal manure, which can be used to produce energy in many ways, inter alia direct combustion. The aim of the study was to measure the concentration of NO, NO x , CO, dust and boiler efficiency during the combustion and co-combustion of wood and manure pellets. The research was conducted in the laboratory of the Poznań University of Technology using a 15 kW domestic boiler at maximum power. Manure pellets had higher moisture—9.2%, lower high heating value—17.25 MJ·kg −1 , lower low heating value—16.45 MJ·kg −1 , and higher ash content—11.23% than wood pellets. The average concentrations of CO, NO, NO x and dust for 100% wood pellets were 198 ± 27 mg·m −3 , 129 ± 5 mg·m −3 , 198 ± 8 mg·m −3 and 8.7 ± 0.5 mg·m −3 , respectively. For this, the fuel boiler power was 13.6 kW (air–fuel ratio 1.48), and it was close to the maximal nominal power. Increasing the share of manure pellets in the burning mixture worsened the stability of the combustion process, and the occurrence of incomplete combustion was observed, which resulted in an increased concentration of CO and dust. Additionally, NO and NO x concentrations also increased. The average boiler power during the combustion of 100% manure pellets was 7.8 kW (air–fuel ratio 2.2), and the average concentrations of CO, NO, NO x and dust were 1548 ± 555 mg·m −3 , 355 ± 53 mg·m −3 , 554 ± 88 mg·m −3 and 482 ± 63 mg·m −3 , respectively.

Suggested Citation

  • Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6691-:d:1242576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    2. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Tańczuk, M. & Junga, R. & Werle, S. & Chabiński, M. & Ziółkowski, Ł., 2019. "Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass," Renewable Energy, Elsevier, vol. 136(C), pages 1055-1063.
    5. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    6. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    7. Czekała, Wojciech & Bartnikowska, Sylwia & Dach, Jacek & Janczak, Damian & Smurzyńska, Anna & Kozłowski, Kamil & Bugała, Artur & Lewicki, Andrzej & Cieślik, Marta & Typańska, Dorota & Mazurkiewicz, Ja, 2018. "The energy value and economic efficiency of solid biofuels produced from digestate and sawdust," Energy, Elsevier, vol. 159(C), pages 1118-1122.
    8. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    9. Modupe Stella Ayilara & Oluwaseyi Samuel Olanrewaju & Olubukola Oluranti Babalola & Olu Odeyemi, 2020. "Waste Management through Composting: Challenges and Potentials," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    10. Aneta Szymajda & Grażyna Łaska & Magdalena Joka, 2021. "Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies," Energies, MDPI, vol. 14(4), pages 1-15, February.
    11. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    12. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    13. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    14. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    2. Aneta Szymajda & Grażyna Łaska & Magdalena Joka, 2021. "Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
    4. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    5. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    6. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    8. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    10. Grzegorz Łysiak & Ryszard Kulig & Jawad Kadhim Al Aridhee, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 1—Study on the Effect of Moisture Content on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    11. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    12. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    14. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    15. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    16. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    17. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    19. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    20. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6691-:d:1242576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.