IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5666-d810771.html
   My bibliography  Save this article

Mitigation of Greenhouse Gas Emissions from Agricultural Fields through Bioresource Management

Author

Listed:
  • Rimsha Khan

    (Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada)

  • Amna Abbas

    (Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Aitazaz A. Farooque

    (Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
    School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada)

  • Farhat Abbas

    (College of Engineering Technology, University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar)

  • Xander Wang

    (School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada)

Abstract

Efficient bioresource management can alter soil biochemistry and soil physical properties, leading to reduced greenhouse gas (GHG) emissions from agricultural fields. The objective of this study was to evaluate the role of organic amendments including biodigestate (BD), biochar (BC), and their combinations with inorganic fertilizer (IF) in increasing carbon sequestration potential and mitigation of GHG emissions from potato ( Solanum tuberosum ) fields. Six soil amendments including BD, BC, IF, and their combinations BDIF and BCIF, and control (C) were replicated four times under a completely randomized block design during the 2021 growing season of potatoes in Prince Edward Island, Canada. An LI-COR gas analyzer was used to monitor emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from treatment plots. Analysis of variance (ANOVA) results depicted higher soil moisture-holding capacities in plots at relatively lower elevations and comparatively lesser volumetric moisture content in plots at higher elevations. Soil moisture was also impacted by soil temperature and rainfall events. There was a significant effect of events of data collection, i.e., the length of the growing season ( p -value ≤ 0.05) on soil surface temperature, leading to increased GHG emissions during the summer months. ANOVA results also revealed that BD, BC, and BCIF significantly ( p -value ≤ 0.05) sequestered more soil organic carbon than other treatments. The six experimental treatments and twelve data collection events had significant effects ( p -value ≤ 0.05) on the emission of CO 2 . However, the BD plots had the least emissions of CO 2 followed by BC plots, and the emissions increased with an increase in atmospheric/soil temperature. Results concluded that organic fertilizers and their combinations with inorganic fertilizers help to reduce the emissions from the agricultural soils and enhance environmental sustainability.

Suggested Citation

  • Rimsha Khan & Amna Abbas & Aitazaz A. Farooque & Farhat Abbas & Xander Wang, 2022. "Mitigation of Greenhouse Gas Emissions from Agricultural Fields through Bioresource Management," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5666-:d:810771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Liu & Qiuxia Wang & Dongdong Yan & Wensheng Fang & Liangang Mao & Dong Wang & Yuan Li & Canbin Ouyang & Meixia Guo & Aocheng Cao, 2016. "Effects of Biochar Amendment on Chloropicrin Adsorption and Degradation in Soil," Energies, MDPI, vol. 9(11), pages 1-14, October.
    2. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    3. Jibing Xiong & Runhua Yu & Ejazul Islam & Fuhai Zhu & Jianfeng Zha & Muhammad Irfan Sohail, 2020. "Effect of Biochar on Soil Temperature under High Soil Surface Temperature in Coal Mined Arid and Semiarid Regions," Sustainability, MDPI, vol. 12(19), pages 1-9, October.
    4. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    5. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yarong Zhang & Yun Nie & Yanling Liu & Xingcheng Huang & Yehua Yang & Han Xiong & Huaqing Zhu & Yu Li, 2022. "Characteristics of Greenhouse Gas Emissions from Yellow Paddy Soils under Long-Term Organic Fertilizer Application," Sustainability, MDPI, vol. 14(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    2. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    3. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    4. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    5. Ujué Fresán & Maximino Alfredo Mejia & Winston J Craig & Karen Jaceldo-Siegl & Joan Sabaté, 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    6. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    7. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    8. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    9. Susana G. Azevedo & Minelle E. Silva & João C. O. Matias & Gustavo P. Dias, 2018. "The Influence of Collaboration Initiatives on the Sustainability of the Cashew Supply Chain," Sustainability, MDPI, vol. 10(6), pages 1-29, June.
    10. Tjärnemo, Heléne & Södahl, Liv, 2015. "Swedish food retailers promoting climate smarter food choices—Trapped between visions and reality?," Journal of Retailing and Consumer Services, Elsevier, vol. 24(C), pages 130-139.
    11. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    12. Bonnet, Céline & Bouamra-Mechemache, Zohra & Réquillart, Vincent & Treich, Nicolas, 2020. "Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare," Food Policy, Elsevier, vol. 97(C).
    13. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    14. Panzone, Luca A. & Ulph, Alistair & Zizzo, Daniel John & Hilton, Denis & Clear, Adrian, 2021. "The impact of environmental recall and carbon taxation on the carbon footprint of supermarket shopping," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    15. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    16. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    17. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    18. Halloran, Afton & Clement, Jesper & Kornum, Niels & Bucatariu, Camelia & Magid, Jakob, 2014. "Addressing food waste reduction in Denmark," Food Policy, Elsevier, vol. 49(P1), pages 294-301.
    19. Nathalie Gröfke & Valérie Duplat & Christopher Wickert & Brian Tjemkes, 2021. "A Multi-Stakeholder Perspective on Food Labelling for Environmental Sustainability: Attitudes, Perceived Barriers, and Solution Approaches towards the “Traffic Light Index”," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    20. Shuai Qin & Hong Chen & Haokun Wang, 2021. "Spatial–Temporal Heterogeneity and Driving Factors of Rural Residents’ Food Consumption Carbon Emissions in China—Based on an ESDA-GWR Model," Sustainability, MDPI, vol. 13(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5666-:d:810771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.