IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5422-d806574.html
   My bibliography  Save this article

Emergency Road Network Determination for Seoul Metropolitan Area

Author

Listed:
  • Seunghyun Choi

    (Department of Urban Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Jonggil Chae

    (Department of Safety and Disaster Prevention, Seoul Institute of Technology, Seoul 33909, Korea)

  • Myungsik Do

    (Department of Urban Engineering, Hanbat National University, Daejeon 34158, Korea)

Abstract

Recently, with the increased frequency of disasters, the demand for measures to secure the golden hour after disasters has been increasing. Therefore, it is necessary to plan and select road infrastructures for effective disaster response. The purpose of this study was to determine emergency road networks for rapid rescue, paramedical activity, and resource transfer in the event of an earthquake in Seoul (including nearby areas). Decisions were made to select a suitable emergency road network in Seoul based on the collection and management of earthquake-related data, grid-based quantitative evaluation of factors regarding demands during disasters and provision of response resources, link-based importance evaluation and grouping analysis, and results of grid and link evaluations. Analysis was first conducted on 16 types of disaster demands, including building, facility, demographic, and response resource-provision data. An expert survey was conducted, and each factor was weighted and integrated into the grid structure for grid-based analysis. Roads and bridges that could play critical roles in an earthquake were selected and grouped in the road network for link-based analysis. The final emergency road network was chosen based on the quantitative and qualitative results from the second and third stages.

Suggested Citation

  • Seunghyun Choi & Jonggil Chae & Myungsik Do, 2022. "Emergency Road Network Determination for Seoul Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5422-:d:806574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edrissi, Ali & Nourinejad, Mehdi & Roorda, Matthew J., 2015. "Transportation network reliability in emergency response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 56-73.
    2. Bana e Costa, Carlos A. & Oliveira, Carlos S. & Vieira, Victor, 2008. "Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon," Omega, Elsevier, vol. 36(3), pages 442-450, June.
    3. Myungsik Do & Yunseung Noh, 2016. "Comparative analysis of informational evacuation guidance by lane-based routing," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(sup1), pages 60-76, July.
    4. Robert Rossi & Kevin Gilmartin, 1980. "Social indicators of youth development and educational performance: A programmatic statement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 7(1), pages 157-191, January.
    5. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    6. Shahparvari, Shahrooz & Abbasi, Babak, 2017. "Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 32-49.
    7. Myungsik Do & Hoyong Jung, 2018. "Enhancing Road Network Resilience by Considering the Performance Loss and Asset Value," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    8. D.K. Yoon & Jung Eun Kang & Samuel D. Brody, 2016. "A measurement of community disaster resilience in Korea," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(3), pages 436-460, March.
    9. Yang Zou & Shuliang Zou & Changming Niu, 2018. "The Optimization of Emergency Evacuation from Nuclear Accidents in China," Sustainability, MDPI, vol. 10(8), pages 1-7, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    2. Cui, Hongjun & Wang, Fei & Li, Xia & Zhu, Minqing, 2020. "Reinforcement and optimization of seismic connectivity of key transportation hubs based on minimum cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Alper Döyen & Necati Aras, 2019. "An Integrated Disaster Preparedness Model for Retrofitting and Relief Item Transportation," Networks and Spatial Economics, Springer, vol. 19(4), pages 1031-1068, December.
    4. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    5. Wilmer Martínez-Rivera & Thomaz Carvalhaes & Petar Jevtić & T. Agami Reddy, 2023. "A treatment-effect model to quantify human dimensions of disaster impacts: the case of Hurricane Maria in Puerto Rico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2033-2068, March.
    6. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Carayannis, Elias G. & Ferreira, Fernando A.F. & Bento, Paulo & Ferreira, João J.M. & Jalali, Marjan S. & Fernandes, Bernardo M.Q., 2018. "Developing a socio-technical evaluation index for tourist destination competitiveness using cognitive mapping and MCDA," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 147-158.
    8. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    9. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    10. Barahimi, Amir Hossein & Eydi, Alireza & Aghaie, Abdolah, 2021. "Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Helmer Paz-Orozco & Irineu de Brito Junior & Mario Chong & Yesid Anacona-Mopan & Jhon Alexander Segura Dorado & Mariana Moyano, 2023. "Earthquake Decision-Making Tool for Humanitarian Logistics Network: An Application in Popayan, Colombia," Logistics, MDPI, vol. 7(4), pages 1-18, October.
    12. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    14. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Minda Tan & Shuiyun Liu, 2023. "A Way of Human Capital Accumulation: Heterogeneous Impact of Shadow Education on Students’ Academic Performance in China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    16. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    17. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Yushuo Ren & Guoming Zhang & Jianxiang Zheng & Huifang Miao, 2024. "An Integrated Solution for Nuclear Power Plant On-Site Optimal Evacuation Path Planning Based on Atmospheric Dispersion and Dose Model," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    20. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5422-:d:806574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.