IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4888-d796909.html
   My bibliography  Save this article

Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India

Author

Listed:
  • Abhilash Singh Chauhan

    (Department of Agricultural Meteorology, CCS Haryana Agricultural University, Hisar 125004, India)

  • Surender Singh

    (Department of Agricultural Meteorology, CCS Haryana Agricultural University, Hisar 125004, India)

  • Rajesh Kumar Singh Maurya

    (School of Earth Ocean and Climate Sciences, Indian Institute of Technology (IIT), Bhubaneswar 752050, India)

  • Ozgur Kisi

    (Department of Civil Engineering, University of Applied Sciences, 23562 Lübeck, Germany
    Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia)

  • Alka Rani

    (Division of Soil Physics, ICAR-Indian Institute of Soil Science, Bhopal 462038, India)

  • Abhishek Danodia

    (Agriculture & Soils Department, Indian Institute of Remote Sensing (IIRS), Dehradun 248001, India)

Abstract

As we know, climate change and climate variability significantly influence the most important component of global hydrological cycle, i.e., rainfall. The study pertaining to change in the spatio-temporal patterns of rainfall dynamics is crucial to take appropriate actions for managing the water resources at regional level and to prepare for extreme events such as floods and droughts. Therefore, our study has investigated the spatio-temporal distribution and performance of seasonal rainfall for all districts of Haryana, India. The gridded rainfall datasets of 120 years (1901 to 2020) from the India Meteorological Department (IMD) were categorically analysed and examined with statistical results using mean rainfall, rainfall deviation, moving-average, rainfall categorization, rainfall trend, correlation analysis, probability distribution function, and climatology of heavy rainfall events. During each season, the eastern districts of Haryana have received more rainfall than those in its western equivalent. Rainfall deviation has been positive during the pre-monsoon season, while it has been negative for all remaining seasons during the third quad-decadal time (QDT3, covering the period of 1981–2020); rainfall has been declining in most of Haryana’s districts during the winter, summer monsoon, and post-monsoon seasons in recent years. The Innovative Trend Analysis (ITA) shows a declining trend in rainfall during the winter, post-monsoon, and summer monsoon seasons while an increasing trend occurs during the pre-monsoon season. Heavy rainfall events (HREs) were identified for each season from the last QDT3 (1981–2020) based on the available data and their analysis was done using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim), which helped in understanding the dynamics of atmospheric parameters during HREs. Our findings are highlighting the qualitative and quantitative aspects of seasonal rainfall dynamics at the districts level in Haryana state. This study is beneficial in understanding the impact of climate change and climate variability on rainfall dynamics in Haryana, which may further guide the policymakers and beneficiaries for optimizing the use of hydrological resources.

Suggested Citation

  • Abhilash Singh Chauhan & Surender Singh & Rajesh Kumar Singh Maurya & Ozgur Kisi & Alka Rani & Abhishek Danodia, 2022. "Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India," Sustainability, MDPI, vol. 14(9), pages 1-32, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4888-:d:796909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Chevuturi & A. P. Dimri, 2016. "Investigation of Uttarakhand (India) disaster-2013 using weather research and forecasting model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1703-1726, July.
    2. Jagadish Patra & A. Mishra & R. Singh & N. Raghuwanshi, 2012. "Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India," Climatic Change, Springer, vol. 111(3), pages 801-817, April.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. David Tilman, 1998. "The greening of the green revolution," Nature, Nature, vol. 396(6708), pages 211-212, November.
    5. Anoop Kumar Mishra, 2016. "Monitoring Tamil Nadu flood of 2015 using satellite remote sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1431-1434, June.
    6. Balwinder-Singh, & Shirsath, Paresh B. & Jat, M.L. & McDonald, A.J. & Srivastava, Amit K. & Craufurd, Peter & Rana, D.S. & Singh, A.K. & Chaudhari, S.K. & Sharma, P.C. & Singh, Rajbir & Jat, H.S. & Si, 2020. "Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India," Agricultural Systems, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitesh Awasthi & Jayant Nath Tripathi & George P. Petropoulos & Dileep Kumar Gupta & Abhay Kumar Singh & Amar Kumar Kathwas & Prashant K. Srivastava, 2023. "Appraisal of Climate Response to Vegetation Indices over Tropical Climate Region in India," Sustainability, MDPI, vol. 15(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepak Singh Bisht & Chandranath Chatterjee & Shivani Kalakoti & Pawan Upadhyay & Manaswinee Sahoo & Ambarnil Panda, 2016. "Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 749-776, November.
    2. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    3. Maurizio Vrenna & Pier Paolo Peruccio & Xin Liu & Fang Zhong & Yuchi Sun, 2021. "Microalgae as Future Superfoods: Fostering Adoption through Practice-Based Design Research," Sustainability, MDPI, vol. 13(5), pages 1-26, March.
    4. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    5. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    6. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    7. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    8. Herendeen, Robert A. & Wildermuth, Todd, 2002. "Resource-based sustainability indicators: Chase County, Kansas, as example," Ecological Economics, Elsevier, vol. 42(1-2), pages 243-257, August.
    9. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    10. Arna Nishita Nithila & Paromita Shome & Ishrat Islam, 2022. "Waterlogging induced loss and damage assessment of urban households in the monsoon period: a case study of Dhaka, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1565-1597, February.
    11. Kumar, Pavan & Singh, S.S. & Pandey, A.K. & Singh, Ram Kumar & Srivastava, Prashant Kumar & Kumar, Manoj & Dubey, Shantanu Kumar & Sah, Uma & Nandan, Rajiv & Singh, Susheel Kumar & Agrawal, Priyanshi , 2021. "Multi-level impacts of the COVID-19 lockdown on agricultural systems in India: The case of Uttar Pradesh," Agricultural Systems, Elsevier, vol. 187(C).
    12. Surminski, Swenja & Eldridge, Jillian, 2015. "Flood insurance in England: an assessment of the current and newly proposed insurance scheme in the context of rising flood risk," LSE Research Online Documents on Economics 66256, London School of Economics and Political Science, LSE Library.
    13. Andy Felix Jităreanu & Mioara Mihăilă & Alexandru-Dragoș Robu & Florin-Daniel Lipșa & Carmen Luiza Costuleanu, 2022. "Dynamic of Ecological Agriculture Certification in Romania Facing the EU Organic Action Plan," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    14. Anoop Kumar Mishra & Mohammad Suhail Meer & Vanganuru Nagaraju, 2019. "Satellite-based monitoring of recent heavy flooding over north-eastern states of India in July 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1407-1412, July.
    15. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    16. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    17. Veronica Arthurson & Lotta Jäderlund, 2011. "Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming," Energies, MDPI, vol. 4(5), pages 1-14, May.
    18. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    19. Stéphane Hallegatte, 2012. "An exploration of the link between development, economic growth, and natural risk," Post-Print hal-00802047, HAL.
    20. Hui Li & Yanyan Gao & Enke Hou, 2021. "Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2173-2196, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4888-:d:796909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.