IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4615-d792329.html
   My bibliography  Save this article

Identifying the Causal Relationship between Travel and Activity Times: A Structural Equation Modeling Approach

Author

Listed:
  • Jahun Koo

    (Department of Urban Planning, Hongik University, Seoul 04066, Korea)

  • Jiyoon Kim

    (Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea)

  • Sungtaek Choi

    (Department of Metropolitan and Urban Transport, Korea Transport Institute, Sejong 30147, Korea)

  • Sangho Choo

    (Department of Urban Design & Planning, Hongik University, Seoul 04066, Korea)

Abstract

This study aims to identify the causal relationship between travel and activity times using the dataset collected from the 2019 Time Use Survey in Korea. As a statistical solution, a structural equation model (SEM) was developed. A total number of 31,177 and 20,817 cases were used in estimating the weekday and weekend models, respectively. Three types of activities (subsistence, maintenance, and leisure), 13 socio-demographic variables, and a newly proposed latent variable (vitality) were incorporated in the final model. Results showed that (1) the magnitude of indirect effects were mostly greater than that of direct effects, (2) all types of activities affected travel time regardless of what the travel purpose was, (3) travel can be treated as both a utility and disutility, and (4) personal status could affect the travel time ratio. It indicates the significance of indirect effects on travel time, thereby suggesting a broad perspective of activities when establishing a transportation policy in practical areas. It also implies that unobserved latent elements could play a meaningful role in identifying travel time-related characteristics. Lastly, we believe that this study contributes to literature by clarifying a new perspective on the lively debated issue discussing whether travel time is wasted or productive.

Suggested Citation

  • Jahun Koo & Jiyoon Kim & Sungtaek Choi & Sangho Choo, 2022. "Identifying the Causal Relationship between Travel and Activity Times: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4615-:d:792329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golob, Thomas F. & McNally, Michael G., 1997. "A Model of Activity Participation Between Household Heads," University of California Transportation Center, Working Papers qt4dj8f1gg, University of California Transportation Center.
    2. Jonas De Vos & Patrick A. Singleton & Tommy Gärling, 2022. "From attitude to satisfaction: introducing the travel mode choice cycle," Transport Reviews, Taylor & Francis Journals, vol. 42(2), pages 204-221, March.
    3. Shao, Fengjing & Sui, Yi & Yu, Xiang & Sun, Rencheng, 2019. "Spatio-temporal travel patterns of elderly people – A comparative study based on buses usage in Qingdao, China," Journal of Transport Geography, Elsevier, vol. 76(C), pages 178-190.
    4. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    5. Kitamura, Ryuichi & Fujii, Satoshi & Pas, Eric I., 1997. "Time-use data, analysis and modeling: toward the next generation of transportation planning methodologies," Transport Policy, Elsevier, vol. 4(4), pages 225-235, October.
    6. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    7. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    8. Mohammad M. Hamed & Fred L. Mannering, 1993. "Modeling Travelers' Postwork Activity Involvement: Toward a New Methodology," Transportation Science, INFORMS, vol. 27(4), pages 381-394, November.
    9. Soora Rasouli & Harry Timmermans, 2014. "Activity-based models of travel demand: promises, progress and prospects," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(1), pages 31-60, March.
    10. M. Manoj & Ashish Verma, 2017. "A structural equation model based analysis of non-workers’ activity-travel behaviour from a city of a developing country," Transportation, Springer, vol. 44(2), pages 241-269, March.
    11. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    12. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    13. Raux, Charles & Ma, Tai-Yu & Joly, Iragaël & Kaufmann, Vincent & Cornelis, Eric & Ovtracht, Nicolas, 2011. "Travel and activity time allocation: An empirical comparison between eight cities in Europe," Transport Policy, Elsevier, vol. 18(2), pages 401-412, March.
    14. Schwanen, Tim & Dijst, Martin, 2002. "Travel-time ratios for visits to the workplace: the relationship between commuting time and work duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 573-592, August.
    15. Golob, Thomas F. & McNally, Michael G., 1997. "A model of activity participation and travel interactions between household heads," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 177-194, June.
    16. Martin Dijst & Velibor Vidakovic, 2000. "Travel time ratio: the key factor of spatial reach," Transportation, Springer, vol. 27(2), pages 179-199, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Cynthia & Mokhtarian, Patricia L, 2005. "An Exploratory Study Using an AIDS Model For Tradeoffs Between Time Allocations to Maintenance Activities/Travel and Discretionary Activities/Travel," Institute of Transportation Studies, Working Paper Series qt2wr907nc, Institute of Transportation Studies, UC Davis.
    2. Schwanen, Tim & Dijst, Martin, 2002. "Travel-time ratios for visits to the workplace: the relationship between commuting time and work duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 573-592, August.
    3. Iragaël Joly & Stéphanie Vincent-Geslin, 2016. "Intensive travel time: an obligation or a choice?," Post-Print halshs-01309467, HAL.
    4. Joly, I., 2011. "Test of the relation between travel and activities times : different representations of a demand derived from activity participation," Working Papers 201103, Grenoble Applied Economics Laboratory (GAEL).
    5. Iragaël Joly, 2006. "The role of travel time budgets – Representation of a demand derived from activity participation," Post-Print halshs-00181431, HAL.
    6. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    7. Chen, Cynthia & Mokhtarian, Patricia, 2008. "A Review and Discussion of the Literature on Travel Time and Money Expenditures," Institute of Transportation Studies, Working Paper Series qt51d696jh, Institute of Transportation Studies, UC Davis.
    8. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    9. Chen, Cynthia & Mokhtarian, Patricia L., 2000. "Modeling Individuals' Travel Time and Money Expenditures," Institute of Transportation Studies, Working Paper Series qt2mx2q8dk, Institute of Transportation Studies, UC Davis.
    10. Jonathan Stiles & Michael J. Smart, 2021. "Working at home and elsewhere: daily work location, telework, and travel among United States knowledge workers," Transportation, Springer, vol. 48(5), pages 2461-2491, October.
    11. Wang, Donggen & Chai, Yanwei & Li, Fei, 2011. "Built environment diversities and activity–travel behaviour variations in Beijing, China," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1173-1186.
    12. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    13. Tim Schwanen & Martin Dijst & Frans M Dieleman, 2002. "A Microlevel Analysis of Residential Context and Travel Time," Environment and Planning A, , vol. 34(8), pages 1487-1507, August.
    14. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    15. Punyabeet Sarangi & M. Manoj, 2022. "Analysis of activity participation and time use decisions of partners: the context of low-and high-income households," Transportation, Springer, vol. 49(3), pages 1017-1058, June.
    16. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    17. Iragaël Joly & Karl Littlejohn & Vincent Kaufmann, 2006. "La croissance des budgets-temps de transport en question : nouvelles approches," Post-Print halshs-00174992, HAL.
    18. Rezwana Rafiq & Michael G. McNally, 2021. "A study of tour formation: pre-, during, and post-recession analysis," Transportation, Springer, vol. 48(5), pages 2187-2233, October.
    19. Timmermans, Harry & van der Waerden, Peter & Alves, Mario & Polak, John & Ellis, Scott & Harvey, Andrew S. & Kurose, Shigeyuki & Zandee, Rianne, 2002. "Time allocation in urban and transport settings: an international, inter-urban perspective," Transport Policy, Elsevier, vol. 9(2), pages 79-93, April.
    20. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4615-:d:792329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.