IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3202-d767095.html
   My bibliography  Save this article

The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic

Author

Listed:
  • Kamila Veselá

    (Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic)

  • Lucie Severová

    (Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic)

  • Roman Svoboda

    (Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic)

Abstract

The warming of the planet and ongoing climate change are now a scientifically proven fact. These phenomena have an impact on nature and many human activities, but logically affect agriculture the most. History has confirmed that the production of grapes (the extent and quality) is significantly affected by climate change. The main goal of this study was to evaluate the impact of climate change through changes in average precipitation and average temperatures on the quantity of grape production in the Czech Republic. A partial goal was then to predict the future development of grape production depending on the expected total precipitation and average temperatures. The effect of changes in average temperatures and total precipitation was evaluated using multiple linear regression methods. The multiple regression model did not reveal a dependence of the total precipitation and average temperatures on the development of the value of vine production due to the statistical insignificance of the effect of average temperatures on the value of vine production. However, when abstracting the effect of average temperatures on the value of vine production, the research confirmed the effect of the change in total precipitation on the value of vine production. The analysis identified the effect of changes in total precipitation and temperatures on the production of grapes in the Czech Republic.

Suggested Citation

  • Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3202-:d:767095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Kebede & R. Dunford & M. Mokrech & E. Audsley & P. Harrison & I. Holman & R. Nicholls & S. Rickebusch & M. Rounsevell & S. Sabaté & F. Sallaba & A. Sanchez & C. Savin & M. Trnka & F. Wimmer, 2015. "Direct and indirect impacts of climate and socio-economic change in Europe: a sensitivity analysis for key land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 261-277, February.
    2. Annette Menzel & Peter Fabian, 1999. "Growing season extended in Europe," Nature, Nature, vol. 397(6721), pages 659-659, February.
    3. Schultz, Hans R., 2016. "Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 181-200, May.
    4. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    5. Aiguo Dai & Anthony D. Del Genio & Inez Y. Fung, 1997. "Clouds, precipitation and temperature range," Nature, Nature, vol. 386(6626), pages 665-666, April.
    6. Helena Hejmalová & Radka Šperková, 2011. "Assessment of attractiveness of the wine-production industry in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(2), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Ribeiro Tosato & Heather VanVolkenburg & Liette Vasseur, 2023. "An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada," Agriculture, MDPI, vol. 13(9), pages 1-13, September.
    2. Limor Dina Gonen & Tchai Tavor & Uriel Spiegel, 2024. "Adapting and Thriving: Global Warming and the Wine Industry," SAGE Open, , vol. 14(1), pages 21582440241, February.
    3. Omamuyovwi Gbejewoh & Saskia Keesstra & Erna Blancquaert, 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    4. Miroslava Navrátilová & Markéta Beranová & Lucie Severová & Karel Šrédl & Roman Svoboda & Josef Abrhám, 2020. "The Impact of Climate Change on the Sugar Content of Grapes and the Sustainability of their Production in the Czech Republic," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    5. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    6. Mariana Senkiv & Jörn Schultheiß & Maximilian Tafel & Martin Reiss & Eckhard Jedicke, 2022. "Are Winegrowers Tourism Promoters?," Sustainability, MDPI, vol. 14(13), pages 1-10, June.
    7. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    8. Brice B. Hanberry & Marc D. Abrams & Gregory J. Nowacki, 2024. "Potential Interactions between Climate Change and Land Use for Forest Issues in the Eastern United States," Land, MDPI, vol. 13(3), pages 1-20, March.
    9. Laroche-Pinel, Eve & Cianciola, Vincenzo & Singh, Khushwinder & Vivaldi, Gaetano A. & Brillante, Luca, 2024. "Assessing the spatial-temporal performance of machine learning in predicting grapevine water status from Landsat 8 imagery via block-out and date-out cross-validation," Agricultural Water Management, Elsevier, vol. 306(C).
    10. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    11. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    12. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Rachel Germanier & Niccolò Moricciani, 2023. "Perceiving and Adapting to Climate Change: Perspectives of Tuscan Wine-Producing Agritourism Owners," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    14. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    15. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    16. Noa Ohana-Levi & Yishai Netzer, 2025. "Long-Term Global Trends in Vineyard Coverage and Fresh Grape Production," Agriculture, MDPI, vol. 15(18), pages 1-32, September.
    17. Mariana Guerra & Fátima Ferreira & Ana Alexandra Oliveira & Teresa Pinto & Carlos A. Teixeira, 2024. "Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    18. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    19. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    20. María Fandiño & Mar Vilanova & Marta Rodríguez-Febereiro & M. Teresa Teijeiro & Benjamín J. Rey & Javier J. Cancela, 2022. "Effect of Deficit Irrigation on Yield Components and Chemical Composition of Albariño Grapes Grown in Galicia, NW Spain," Agriculture, MDPI, vol. 12(10), pages 1-15, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3202-:d:767095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.