IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v128y2015i3p261-277.html
   My bibliography  Save this article

Direct and indirect impacts of climate and socio-economic change in Europe: a sensitivity analysis for key land- and water-based sectors

Author

Listed:
  • A. Kebede
  • R. Dunford
  • M. Mokrech
  • E. Audsley
  • P. Harrison
  • I. Holman
  • R. Nicholls
  • S. Rickebusch
  • M. Rounsevell
  • S. Sabaté
  • F. Sallaba
  • A. Sanchez
  • C. Savin
  • M. Trnka
  • F. Wimmer

Abstract

Integrated cross-sectoral impact assessments facilitate a comprehensive understanding of interdependencies and potential synergies, conflicts, and trade-offs between sectors under changing conditions. This paper presents a sensitivity analysis of a European integrated assessment model, the CLIMSAVE integrated assessment platform (IAP). The IAP incorporates important cross-sectoral linkages between six key European land- and water-based sectors: agriculture, biodiversity, flooding, forests, urban, and water. Using the IAP, we investigate the direct and indirect implications of a wide range of climatic and socio-economic drivers to identify: (1) those sectors and regions most sensitive to future changes, (2) the mechanisms and directions of sensitivity (direct/indirect and positive/negative), (3) the form and magnitudes of sensitivity (linear/non-linear and strong/weak/insignificant), and (4) the relative importance of the key drivers across sectors and regions. The results are complex. Most sectors are either directly or indirectly sensitive to a large number of drivers (more than 18 out of 24 drivers considered). Over twelve of these drivers have indirect impacts on biodiversity, forests, land use diversity, and water, while only four drivers have indirect effects on flooding. In contrast, for the urban sector all the drivers are direct. Moreover, most of the driver–indicator relationships are non-linear, and hence there is the potential for ‘surprises’. This highlights the importance of considering cross-sectoral interactions in future impact assessments. Such systematic analysis provides improved information for decision-makers to formulate appropriate adaptation policies to maximise benefits and minimise unintended consequences. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • A. Kebede & R. Dunford & M. Mokrech & E. Audsley & P. Harrison & I. Holman & R. Nicholls & S. Rickebusch & M. Rounsevell & S. Sabaté & F. Sallaba & A. Sanchez & C. Savin & M. Trnka & F. Wimmer, 2015. "Direct and indirect impacts of climate and socio-economic change in Europe: a sensitivity analysis for key land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 261-277, February.
  • Handle: RePEc:spr:climat:v:128:y:2015:i:3:p:261-277
    DOI: 10.1007/s10584-014-1313-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1313-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1313-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    2. Robert J. Nicholls & Abiy S. Kebede, 2012. "Indirect impacts of coastal climate change and sea-level rise: the UK example," Climate Policy, Taylor & Francis Journals, vol. 12(sup01), pages 28-52, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    2. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    2. Sikstus Gusli & Sri Sumeni & Riyami Sabodin & Ikram Hadi Muqfi & Mustakim Nur & Kurniatun Hairiah & Daniel Useng & Meine van Noordwijk, 2020. "Soil Organic Matter, Mitigation of and Adaptation to Climate Change in Cocoa–Based Agroforestry Systems," Land, MDPI, vol. 9(9), pages 1-18, September.
    3. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    4. Edmond Totin & Alcade C. Segnon & Marc Schut & Hippolyte Affognon & Robert B. Zougmoré & Todd Rosenstock & Philip K. Thornton, 2018. "Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    5. Mwongera, Caroline & Shikuku, Kelvin M. & Twyman, Jennifer & Läderach, Peter & Ampaire, Edidah & Van Asten, Piet & Twomlow, Steve & Winowiecki, Leigh A., 2017. "Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 192-203.
    6. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    7. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    8. Alexandria Soontiens-Olsen & Laurel Genge & Andrew Scott Medeiros & Georgia Klein & Shannon Lin & Lorn Sheehan, 2023. "Coastal Adaptation and Vulnerability Assessment in a Warming Future: A Systematic Review of the Tourism Sector," SAGE Open, , vol. 13(2), pages 21582440231, June.
    9. Lintao Liu & Shouchao Yu & Hengjia Zhang & Yong Wang & Chao Liang, 2023. "Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    10. Juita-Elena (Wie) Yusuf & Katharine Neill & Burton St John III & Ivan K Ash & Kaitrin Mahar, 2016. "The sea is rising… but not onto the policy agenda: A multiple streams approach to understanding sea level rise policies," Environment and Planning C, , vol. 34(2), pages 228-243, March.
    11. Nosrati, Kazem & Jalal, Saeede, 2016. "The Effect of Forest Road Construction on Soil Organic Carbon Stock in Mountainous Catchment in Northern Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 6(2), June.
    12. Gebeyanesh Zerssa & Debela Feyssa & Dong-Gill Kim & Bettina Eichler-Löbermann, 2021. "Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture," Agriculture, MDPI, vol. 11(3), pages 1-26, February.
    13. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    14. Grafakos, S. & Viero, G. & Reckien, D. & Trigg, K. & Viguie, V. & Sudmant, A. & Graves, C. & Foley, A. & Heidrich, O. & Mirailles, J.M. & Carter, J. & Chang, L.H. & Nador, C. & Liseri, M. & Chelleri, , 2020. "Integration of mitigation and adaptation in urban climate change action plans in Europe: A systematic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
    16. Blanco, Victor & Holzhauer, Sascha & Brown, Calum & Lagergren, Fredrik & Vulturius, Gregor & Lindeskog, Mats & Rounsevell, Mark D.A., 2017. "The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden," Ecosystem Services, Elsevier, vol. 23(C), pages 174-208.
    17. Yves Hategekimana & Mona Allam & Qingyan Meng & Yueping Nie & Elhag Mohamed, 2020. "Quantification of Soil Losses along the Coastal Protected Areas in Kenya," Land, MDPI, vol. 9(5), pages 1-16, May.
    18. Trædal, Leif Tore & Vedeld, Pål, 2018. "Cultivating forests: The role of forest land in household livelihood adaptive strategies in the Bac Kan Province of northern Vietnam," Land Use Policy, Elsevier, vol. 73(C), pages 249-258.
    19. Dale, Virginia H. & Kline, Keith L. & Buford, Marilyn A. & Volk, Timothy A. & Tattersall Smith, C. & Stupak, Inge, 2016. "Incorporating bioenergy into sustainable landscape designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1158-1171.
    20. Stelios Grafakos & Kate Trigg & Mia Landauer & Lorenzo Chelleri & Shobhakar Dhakal, 2019. "Analytical framework to evaluate the level of integration of climate adaptation and mitigation in cities," Climatic Change, Springer, vol. 154(1), pages 87-106, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:128:y:2015:i:3:p:261-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.