IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i1d10.1007_s11069-016-2347-4.html
   My bibliography  Save this article

A systematic assessment of maritime disruptions affecting UK ports, coastal areas and surrounding seas from 1950 to 2014

Author

Listed:
  • E. F. Adam

    (University of Southampton)

  • S. Brown

    (University of Southampton)

  • R. J. Nicholls

    (University of Southampton)

  • M. Tsimplis

    (University of Southampton)

Abstract

Maritime disruptions can have severe negative implications including affecting business operations, regional and national economies and causing damage to vessels. This study analysed maritime disruptions in UK ports, coastal areas and surrounding seas from 1950 to 2014, systematically assessing their scale, duration, extent and consequences. Disruptions are a single or sequence of hazardous events that negatively affect ‘business as usual’ conditions, ranging from minor to major disruption and even loss of life. To express this range, a severity scale was developed and applied. A database of maritime disruptions and their severities was constructed using data archaeology, identifying 88 events, primarily caused by wind storms (36 %), human error (23 %), mechanical faults (14 %) and storm surges (12 %). All events other than human error or mechanical faults occurred between October and March (typically associated with autumn/winter storms and depressions), with 65 % recorded between November and January. Maritime disruptions from weather events tended to have regional/national impacts, whereas human error or mechanical faults were usually locally severe. Since 2000, ports demonstrated more frequent disruption to wind storms due to mechanization, increased delay and closure reporting, and refined health and safety regulations. Most frequently affected were the sea areas Fair Isle and Dover, and the Felixstowe and Dover ports. Through time, primary impacts shifted from extensive flooding and structural damage to financial impacts and disruption, associated with adaptation including implementation/upgrading of coastal defences, storm warning systems and legislation. Port and governmental bodies responded adaptively (e.g. Thames Barrier construction and development of automatic tracking systems). The UK’s maritime disruption vulnerability has altered significantly since 1950 and continues to evolve.

Suggested Citation

  • E. F. Adam & S. Brown & R. J. Nicholls & M. Tsimplis, 2016. "A systematic assessment of maritime disruptions affecting UK ports, coastal areas and surrounding seas from 1950 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 691-713, August.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2347-4
    DOI: 10.1007/s11069-016-2347-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2347-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2347-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amy Ruocco & Robert Nicholls & Ivan Haigh & Matthew Wadey, 2011. "Reconstructing coastal flood occurrence combining sea level and media sources: a case study of the Solent, UK since 1935," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1773-1796, December.
    2. Winfried Osthorst & Christine Mänz, 2012. "Types of cluster adaptation to climate change. Lessons from the port and logistics sector of Northwest Germany," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(2), pages 227-248, March.
    3. Robert J. Nicholls & Abiy S. Kebede, 2012. "Indirect impacts of coastal climate change and sea-level rise: the UK example," Climate Policy, Taylor & Francis Journals, vol. 12(sup01), pages 28-52, September.
    4. Ng, Adolf K.Y. & Liu, John J., 2010. "The port and maritime industries in the post-2008 world: Challenges and opportunities," Research in Transportation Economics, Elsevier, vol. 27(1), pages 1-3.
    5. Sally Brown & Susan Hanson & Robert Nicholls, 2014. "Implications of sea-level rise and extreme events around Europe: a review of coastal energy infrastructure," Climatic Change, Springer, vol. 122(1), pages 81-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panahi, Roozbeh & Ng, Adolf K.Y. & Pang, Jiayi, 2020. "Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties," Transport Policy, Elsevier, vol. 95(C), pages 10-29.
    2. Yebao Wang & Jiaqi Liu & Xin Du & Qian Liu & Xin Liu, 2021. "Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1273-1285, June.
    3. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jūratė Liebuvienė & Kristina Čižiūnienė, 2021. "Comparative Analysis of Ports on the Eastern Baltic Sea Coast," Logistics, MDPI, vol. 6(1), pages 1-29, December.
    2. Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    3. Chen, Yang & Yang, Dong & Lian, Peng & Wan, Zheng & Yang, Yubin, 2020. "Will structure-environment-fit result in better port performance? —An empirical test on the validity of Matching Framework Theory," Transport Policy, Elsevier, vol. 86(C), pages 23-33.
    4. Matthew Wadey & Robert Nicholls & Ivan Haigh, 2013. "Understanding a coastal flood event: the 10th March 2008 storm surge event in the Solent, UK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 829-854, June.
    5. Alexandria Soontiens-Olsen & Laurel Genge & Andrew Scott Medeiros & Georgia Klein & Shannon Lin & Lorn Sheehan, 2023. "Coastal Adaptation and Vulnerability Assessment in a Warming Future: A Systematic Review of the Tourism Sector," SAGE Open, , vol. 13(2), pages 21582440231, June.
    6. Hyungjun Park & Robert Paterson & Stephen Zigmund & Hyunsuk Shin & Youngsu Jang & Juchul Jung, 2020. "The Effect of Coastal City Development on Flood Damage in South Korea," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
    7. Juita-Elena (Wie) Yusuf & Katharine Neill & Burton St John III & Ivan K Ash & Kaitrin Mahar, 2016. "The sea is rising… but not onto the policy agenda: A multiple streams approach to understanding sea level rise policies," Environment and Planning C, , vol. 34(2), pages 228-243, March.
    8. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    9. Peter J. Stavroulakis & Stratos Papadimitriou, 2017. "Situation analysis forecasting: the case of European maritime clusters," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(6), pages 779-789, August.
    10. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    11. Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
    12. Yves Hategekimana & Mona Allam & Qingyan Meng & Yueping Nie & Elhag Mohamed, 2020. "Quantification of Soil Losses along the Coastal Protected Areas in Kenya," Land, MDPI, vol. 9(5), pages 1-16, May.
    13. Sally Brown & Susan Hanson & Robert Nicholls, 2014. "Implications of sea-level rise and extreme events around Europe: a review of coastal energy infrastructure," Climatic Change, Springer, vol. 122(1), pages 81-95, January.
    14. Panahi, Roozbeh & Ng, Adolf K.Y. & Pang, Jiayi, 2020. "Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties," Transport Policy, Elsevier, vol. 95(C), pages 10-29.
    15. Domicián Máté & Adam Novotny & Daniel Francois Meyer, 2021. "The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    16. Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
    17. Tianni Wang & Mark Ching-Pong Poo & Adolf K. Y. Ng & Zaili Yang, 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    18. Michael J. Ford & Ahmed Abdulla & M. Granger Morgan, 2017. "Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2191-2211, November.
    19. R. C. Winter & B. G. Ruessink, 2017. "Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast," Climatic Change, Springer, vol. 141(4), pages 685-701, April.
    20. Lam, Jasmine Siu Lee & Li, Kevin X., 2019. "Green port marketing for sustainable growth and development," Transport Policy, Elsevier, vol. 84(C), pages 73-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2347-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.