IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6721d10.1038_17709.html
   My bibliography  Save this article

Growing season extended in Europe

Author

Listed:
  • Annette Menzel

    (University of Munich, Faculty of Forest Science)

  • Peter Fabian

    (University of Munich, Faculty of Forest Science)

Abstract

Changes in phenology (seasonal plant and animal activity driven by environmental factors) from year to year may be a sensitive and easily observable indicator of changes in the biosphere. We have analysed data from more than 30 years of observation in Europe, and found that spring events, such as leaf unfolding, have advanced by 6 days, whereas autumn events, such as leaf colouring, have been delayed by 4.8 days. This means that the average annual growing season has lengthened by 10.8 days since the early 1960s. These shifts can be attributed to changes in air temperature.

Suggested Citation

  • Annette Menzel & Peter Fabian, 1999. "Growing season extended in Europe," Nature, Nature, vol. 397(6721), pages 659-659, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6721:d:10.1038_17709
    DOI: 10.1038/17709
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17709
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyan Cai & Shuwen Zhang & Xiaohuan Yang, 2012. "Forest Dynamics and Their Phenological Response to Climate Warming in the Khingan Mountains, Northeastern China," IJERPH, MDPI, vol. 9(11), pages 1-11, October.
    2. Russell, Stephen & Barron, Andrew B. & Harris, David, 2013. "Dynamic modelling of honey bee (Apis mellifera) colony growth and failure," Ecological Modelling, Elsevier, vol. 265(C), pages 158-169.
    3. Ana Márquez & Raimundo Real & Jesús Olivero & Alba Estrada, 2011. "Combining climate with other influential factors for modelling the impact of climate change on species distribution," Climatic Change, Springer, vol. 108(1), pages 135-157, September.
    4. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    5. Jose Oteros & Herminia García-Mozo & Roser Botey & Antonio Mestre & Carmen Galán, 2015. "Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012)," Climatic Change, Springer, vol. 130(4), pages 545-558, June.
    6. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    7. V. P. Khanduri & C. M. Sharma & S. P. Singh, 2008. "The effects of climate change on plant phenology," Environment Systems and Decisions, Springer, vol. 28(2), pages 143-147, June.
    8. Andrei Lapenis & Hugh Henry & Mathias Vuille & James Mower, 2014. "Climatic factors controlling plant sensitivity to warming," Climatic Change, Springer, vol. 122(4), pages 723-734, February.
    9. Olsson, Cecilia & Bolmgren, Kjell & Lindström, Johan & Jönsson, Anna Maria, 2013. "Performance of tree phenology models along a bioclimatic gradient in Sweden," Ecological Modelling, Elsevier, vol. 266(C), pages 103-117.
    10. Viorica GAVRILĂ, 2017. "The Stability of Fruit Production Under the Impact of Climate Factors – Scientific Literature-Based Approaches," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 14(2), pages 267-274.
    11. Machado, Elia Axinia & Purcell, Helene & Simons, Andrew M. & Swinehart, Stephanie, 2020. "The Quest for Greener Pastures: Evaluating the Livelihoods Impacts of Providing Vegetation Condition Maps to Pastoralists in Eastern Africa," Ecological Economics, Elsevier, vol. 175(C).
    12. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    13. Czesław Koźmiński & Jadwiga Nidzgorska-Lencewicz & Agnieszka Mąkosza & Bożena Michalska, 2021. "Ground Frosts in Poland in the Growing Season," Agriculture, MDPI, vol. 11(7), pages 1-18, June.
    14. Thiele, Jan C. & Nuske, Robert S. & Ahrends, Bernd & Panferov, Oleg & Albert, Matthias & Staupendahl, Kai & Junghans, Udo & Jansen, Martin & Saborowski, Joachim, 2017. "Climate change impact assessment—A simulation experiment with Norway spruce for a forest district in Central Europe," Ecological Modelling, Elsevier, vol. 346(C), pages 30-47.
    15. Abelardo García-Martín & Luis L. Paniagua & Francisco J. Moral & Francisco J. Rebollo & María A. Rozas, 2021. "Spatiotemporal Analysis of the Frost Regime in the Iberian Peninsula in the Context of Climate Change (1975–2018)," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    16. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    17. Chai, Xi & Shi, Peili & Song, Minghua & Zong, Ning & He, Yongtao & Zhao, Guangshai & Zhang, Xianzhou, 2019. "Carbon flux phenology and net ecosystem productivity simulated by a bioclimatic index in an alpine steppe-meadow on the Tibetan Plateau," Ecological Modelling, Elsevier, vol. 394(C), pages 66-75.
    18. KK Pandey & BVS Sisodia & VN Rai, 2017. "Preliminary Observations on the Behavior ofFeral Chickens (Jungle Fowl) on the Island of Kauai Reflections on Domestication as Complexity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 4(4), pages 112-116, - Septemb.
    19. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    20. Czesław Koźmiński & Agnieszka Mąkosza & Jadwiga Nidzgorska-Lencewicz & Bożena Michalska, 2023. "Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C)," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    21. Franziska Kolek & Maria Del Pilar Plaza & Vivien Leier-Wirtz & Arne Friedmann & Claudia Traidl-Hoffmann & Athanasios Damialis, 2021. "Earlier Flowering of Betula pendula Roth in Augsburg, Germany, Due to Higher Temperature, NO 2 and Urbanity, and Relationship with Betula spp. Pollen Season," IJERPH, MDPI, vol. 18(19), pages 1-17, September.
    22. Brice B. Hanberry & Marc D. Abrams & Gregory J. Nowacki, 2024. "Potential Interactions between Climate Change and Land Use for Forest Issues in the Eastern United States," Land, MDPI, vol. 13(3), pages 1-20, March.
    23. Kim, Sohee & Kang, Sinkyu & Lim, Jong-Hwan & Chun, Jung-Hwa & Sung, Joo-Han, 2012. "Regional parameterization of canopy onset models using MODIS and flowering onset data," Ecological Modelling, Elsevier, vol. 247(C), pages 190-198.
    24. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6721:d:10.1038_17709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.