IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2568-d756650.html
   My bibliography  Save this article

Exploration of Copula Models Use in Risk Assessment for Freezing and Snow Events: A Case Study in Southern China

Author

Listed:
  • Qian Li

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Liutong Chen

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Zhengtao Yan

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yingjun Xu

    (Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China)

Abstract

Due to cold waves, low and extremely low temperatures occur every winter. Sudden cooling can cause freezing and snow disasters, which seriously affect transportation, power, safety, and other activities, resulting in serious economic losses. Based on precipitation and average temperature data from 258 national meteorological stations over the past 70 years, this study established a historical freezing and snow event data set, extracting the accumulated precipitation intensity (API) and accumulated temperature intensity (ATI). We selected the optimal distribution function and joint distribution function for each station and calculated the univariate and bivariate joint return periods. The return period accuracy plays an important role in risk assessment results. By comparing the calculations with the real return period for historical extreme events, we found that the bivariate joint return period based on a copula model was more accurate than the univariate return period. This is important for the prediction and risk assessment of freezing and snow disasters. Additionally, a risk map based on the joint return period showed that Jiangsu and Anhui, as well as some individual stations in the central provinces, were high-risk areas; however, the risk level was lower in Chongqing and the southern provinces.

Suggested Citation

  • Qian Li & Liutong Chen & Zhengtao Yan & Yingjun Xu, 2022. "Exploration of Copula Models Use in Risk Assessment for Freezing and Snow Events: A Case Study in Southern China," Sustainability, MDPI, vol. 14(5), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2568-:d:756650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aijun Hu & Wei Xie & Ning Li & Xuanhua Xu & Zhonghui Ji & Jidong Wu, 2014. "Analyzing regional economic impact and resilience: a case study on electricity outages caused by the 2008 snowstorms in southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1019-1030, January.
    2. J. Cohen & X. Zhang & J. Francis & T. Jung & R. Kwok & J. Overland & T. J. Ballinger & U. S. Bhatt & H. W. Chen & D. Coumou & S. Feldstein & H. Gu & D. Handorf & G. Henderson & M. Ionita & M. Kretschm, 2020. "Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather," Nature Climate Change, Nature, vol. 10(1), pages 20-29, January.
    3. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    4. Valerio De Biagi & Monica Barbero & Mauro Borri-Brunetto, 2016. "A reliability-based method for taking into account snowfall return period in the design of buildings in avalanche-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1901-1912, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiuxuan Xu & Feiyan Huang & Shuhang Mou & Heng Lu, 2023. "Snow Disaster Hazard Assessment on the Tibetan Plateau Based on Copula Function," Sustainability, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    3. Zhang, Hailing & Liu, Changxin & Wang, Can, 2021. "Extreme climate events and economic impacts in China: A CGE analysis with a new damage function in IAM," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    5. Yingqi Zhu & Ying Wang & Tianxue Liu & Qi Sui, 2018. "Assessing macroeconomic recovery after a natural hazard based on ARIMA—a case study of the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1025-1038, April.
    6. Alec P. Bennett & Troy J. Bouffard & Uma S. Bhatt, 2022. "Arctic Sea Ice Decline and Geoengineering Solutions: Cascading Security and Ethical Considerations," Challenges, MDPI, vol. 13(1), pages 1-18, May.
    7. Randall W. Jackson & Amir Borges Ferreira Neto & Elham Erfanian & Péter Járosi, 2019. "Woody Biomass Processing and Rural Regional Development," Economic Development Quarterly, , vol. 33(3), pages 234-247, August.
    8. James E. Overland, 2021. "Rare events in the Arctic," Climatic Change, Springer, vol. 168(3), pages 1-13, October.
    9. Liping Wang & Xingnan Zhang & Shufang Wang & Mohamed Khaled Salahou & Yuanhao Fang, 2020. "Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    10. Yao, Qianyi & Fan, Ruguo & Chen, Rongkai & Qian, Rourou, 2023. "A model of the enterprise supply chain risk propagation based on partially mapping two-layer complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    11. Rokicki, Bartlomiej & de Souza, Kenia Barreiro & de Santana Ribeiro, Luiz Carlos, 2023. "Modelling the Effects of the EU Emissions Trading System in Poland: A Comparison Between IO And CGE Results," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 53(2), 14.
    12. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    13. Chen An & Ming Dou & Jianling Zhang & Guiqiu Li, 2021. "Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4877-4894, November.
    14. Mubenga-Tshitaka, Jean-Luc & Muteba Mwamba, John W. & Dikgang, Johane & Gelo, Dambala, 2021. "Risk spillover between climate variables and the agricultural commodity market in East Africa," EconStor Preprints 243160, ZBW - Leibniz Information Centre for Economics.
    15. Xiao Liu & Ping Guo & Qian Tan & Fan Zhang & Yan Huang & Youzhi Wang, 2021. "Drought disaster risk management based on optimal allocation of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 285-308, August.
    16. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    17. Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Valerio De Biagi & Maria Lia Napoli & Monica Barbero, 2017. "A quantitative approach for the evaluation of rockfall risk on buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1059-1086, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2568-:d:756650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.