Differences in effects of varying compound extreme temperature and precipitation events on summer maize yield in North China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2024.109237
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Suxia & Mo, Xingguo & Lin, Zhonghui & Xu, Yueqing & Ji, Jinjun & Wen, Gang & Richey, Jeff, 2010. "Crop yield responses to climate change in the Huang-Huai-Hai Plain of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1195-1209, August.
- Zhao, Yunmeng & Na, Mula & Guo, Ying & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan & Zhao, Chunli, 2023. "Dynamic vulnerability assessment of maize under low temperature and drought concurrent stress in Songliao Plain," Agricultural Water Management, Elsevier, vol. 286(C).
- Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
- Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
- Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
- Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
- Potopová, V. & Trifan, T. & Trnka, M. & De Michele, C. & Semerádová, D. & Fischer, M. & Meitner, J. & Musiolková, M. & Muntean, N. & Clothier, B., 2023. "Copulas modelling of maize yield losses – drought compound events using the multiple remote sensing indices over the Danube River Basin," Agricultural Water Management, Elsevier, vol. 280(C).
- Hu, Juan & Zhao, Xinyu & Gu, Liming & Liu, Peng & Zhao, Bin & Zhang, Jiwang & Ren, Baizhao, 2023. "The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize," Agricultural Water Management, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Shengli & Zhang, Wei & Shi, Tongtong & Li, Tong & Li, Hui & Zhou, Guanyin & Wang, Zhanbiao & Ma, Xiongfeng, 2025. "Increasing exposure of cotton growing areas to compound drought and heat events in a warming climate," Agricultural Water Management, Elsevier, vol. 308(C).
- Zhao, Yunmeng & Na, Mula & Guo, Ying & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan & Zhao, Chunli, 2023. "Dynamic vulnerability assessment of maize under low temperature and drought concurrent stress in Songliao Plain," Agricultural Water Management, Elsevier, vol. 286(C).
- Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
- Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
- Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021.
"Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages,"
Climatic Change, Springer, vol. 169(3), pages 1-19, December.
- Schierhorn, Florian & Hofmann, Max & Gagalyuk, Taras & Ostapchuk, Igor & Müller, Daniel, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169.
- Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
- Ngawang Chhogyel & Lalit Kumar & Yadunath Bajgai, 2020. "Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
- Wu, Bingfang & Ma, Zonghan & Boken, Vijendra K. & Zeng, Hongwei & Shang, Jiali & Igor, Savin & Wang, Jinxia & Yan, Nana, 2022. "Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world," Agricultural Water Management, Elsevier, vol. 273(C).
- Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
- Meng, Huayue & Qian, Long, 2024. "Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 296(C).
- Simin Deng & Xuezhi Tan & Bingjun Liu, 2025. "Impacts of changes in climate extremes on maize yields over Mainland China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 185-205, February.
- Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
- Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
- Emilie Stokeld & Simon A. Croft & Jonathan M. H. Green & Christopher D. West, 2020. "Climate change, crops and commodity traders: subnational trade analysis highlights differentiated risk exposure," Climatic Change, Springer, vol. 162(2), pages 175-192, September.
- Hui Yin & Fuqing Bai & Huiming Wu & Meng Yan & Shuai Zhou, 2024. "Assessment of Vegetation Vulnerability in the Haihe River Basin Under Compound Heat and Drought Stress," Sustainability, MDPI, vol. 16(23), pages 1-19, November.
- Ching-Pong Poo, Mark & Wang, Tianni & Yang, Zaili, 2024. "Global food supply chain resilience assessment: A case in the United Kingdom," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
- Jingpeng Guo & Kebiao Mao & Yinghui Zhao & Zhong Lu & Xiaoping Lu, 2019. "Impact of Climate on Food Security in Mainland China: A New Perspective Based on Characteristics of Major Agricultural Natural Disasters and Grain Loss," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
- Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
- Xi Deng & Yao Huang & Wenjuan Sun & Lingfei Yu & Xunyu Hu & Sheng Wang, 2019. "Different Time Windows Provide Divergent Estimates of Climate Variability and Change Impacts on Maize Yield in Northeast China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
- Khondoker A. Mottaleb & Roderick M. Rejesus & MVR Murty & Samarendu Mohanty & Tao Li, 2017. "Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 879-901, August.
More about this item
Keywords
SPI; STI; Concurrent stress; Extreme events; Vine copula;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005730. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.