IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10489-d1532992.html
   My bibliography  Save this article

Assessment of Vegetation Vulnerability in the Haihe River Basin Under Compound Heat and Drought Stress

Author

Listed:
  • Hui Yin

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Fuqing Bai

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Huiming Wu

    (Guangzhou Zhukeyuan Engineering Survey and Design Co., Ltd., Guangzhou 510610, China)

  • Meng Yan

    (Guangzhou Zhukeyuan Engineering Survey and Design Co., Ltd., Guangzhou 510610, China)

  • Shuai Zhou

    (School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, No. 19 Taiji Road, Handan Economic and Technological, Development Zone, Handan 056038, China)

Abstract

With the intensification of global warming, droughts and heatwaves occur frequently and widely, which have a serious impact on the healthy growth of vegetation. The challenge is to accurately characterize vegetation vulnerability under compound heat and drought stress using correlation-based methods. This article uses the Haihe River Basin, an ecologically sensitive area known for experiencing droughts nine out of ten years, as an example. Firstly, using daily precipitation and maximum temperature data from 38 meteorological stations in the basin from 1965 to 2019, methods such as univariate linear regression and the Mann–Kendall mutation test were employed to identify the temporal variation patterns of meteorological elements in the basin. Secondly, the Pearson correlation coefficient and other methods were applied to determine the most likely months for compound dry and hot events, and the joint distribution pattern and recurrence period of concurrent high temperature and intense drought events were explored. Finally, a vegetation vulnerability assessment model based on Vine Copula in compound dry and hot climates was constructed to quantify the relationship of the response of watershed vegetation to different extreme events (high temperature, drought, and compound dry and hot climates). The results indicated that the basin’s precipitation keeps decreasing, evaporation rises, and the supply–demand conflict grows more severe. The correlation between the Standardized Precipitation Index (SPI) and Standardized Temperature Index (STI) is strongest at the 3-month scale from June to August. Meanwhile, in most areas of the basin, the Standardized Normalized Difference Vegetation Index (sNDVI) is positively correlated with the SPI and negatively correlated with the STI. Compared to a single drought or high-temperature event, compound dry and hot climates further exacerbate the vegetation vulnerability of the Haihe River Basin. In compound dry and hot climates, the probability of vegetation loss in June, July, and August is as high as 0.45, 0.32, and 0.38, respectively. Moreover, vegetation vulnerability in the southern and northwestern mountainous areas of the basin is higher, and the ecological risk is severe. The research results contribute to an understanding of the vegetation’s response to extreme climate events, aiming to address terrestrial ecosystem risk management in response to climate change.

Suggested Citation

  • Hui Yin & Fuqing Bai & Huiming Wu & Meng Yan & Shuai Zhou, 2024. "Assessment of Vegetation Vulnerability in the Haihe River Basin Under Compound Heat and Drought Stress," Sustainability, MDPI, vol. 16(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10489-:d:1532992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Hu, Juan & Zhao, Xinyu & Gu, Liming & Liu, Peng & Zhao, Bin & Zhang, Jiwang & Ren, Baizhao, 2023. "The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize," Agricultural Water Management, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhongxian & Qiu, Rangjian & Zhang, Qi, 2025. "Differences in effects of varying compound extreme temperature and precipitation events on summer maize yield in North China," Agricultural Water Management, Elsevier, vol. 307(C).
    2. F. Durante & A. Gatto & F. Ravazzolo, 2024. "Understanding relationships with the Aggregate Zonal Imbalance using copulas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 513-554, April.
    3. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    4. Yao, Yinhong & Chen, Xiuwen & Chen, Zhensong, 2025. "Portfolio tail risk forecasting for international financial assets: A GARCH-MIDAS-R-Vine copula model," The North American Journal of Economics and Finance, Elsevier, vol. 77(C).
    5. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    6. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    8. Rubén Albeiro Loaiza Maya & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo Velandia, 2015. "Latin American Exchange Rate Dependencies: A Regular Vine Copula Approach," Contemporary Economic Policy, Western Economic Association International, vol. 33(3), pages 535-549, July.
    9. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    10. Schinke-Nendza, A. & von Loeper, F. & Osinski, P. & Schaumann, P. & Schmidt, V. & Weber, C., 2021. "Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies," Applied Energy, Elsevier, vol. 304(C).
    11. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    12. Xiangying Meng & Xianhua Wei, 2018. "Systematic Correlation is Priced as Risk Factor," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-2.
    13. Tai-Hsin Huang & Nan-Hung Liu & Subal C. Kumbhakar, 2018. "Joint estimation of the Lerner index and cost efficiency using copula methods," Empirical Economics, Springer, vol. 54(2), pages 799-822, March.
    14. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    15. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    17. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    18. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    19. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10489-:d:1532992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.