Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
- Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
- Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Muhammad Ali Musarat & Wesam Salah Alaloul & Muhammad Babar Ali Rabbani & Mujahid Ali & Muhammad Altaf & Roman Fediuk & Nikolai Vatin & Sergey Klyuev & Hamna Bukhari & Alishba Sadiq & Waqas Rafiq & Wa, 2021. "Kabul River Flow Prediction Using Automated ARIMA Forecasting: A Machine Learning Approach," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
- Li, Hong-Xing & Da, Xu Li, 2000. "A neural network representation of linear programming," European Journal of Operational Research, Elsevier, vol. 124(2), pages 224-234, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
- Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
- Issam Rehamnia & Amin Mahdavi-Meymand, 2025. "Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 779-794, January.
- Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
- Martín Alfredo Legarreta-González & César A. Meza-Herrera & Rafael Rodríguez-Martínez & Darithsa Loya-González & Carlos Servando Chávez-Tiznado & Viridiana Contreras-Villarreal & Francisco Gerardo Vél, 2024. "Selecting a Time-Series Model to Predict Drinking Water Extraction in a Semi-Arid Region in Chihuahua, Mexico," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
- Xinyong Xu & Zixuan Zhu & Xiaonan Chen & Bo Wang & Xianliang Liu & Li Jiang & Zhenbao Wang & Yuxian Qiu & Laike Yang & Xu Qi & Hao Lu, 2025. "Short-Term Water Level Prediction for Long-Distance Water Diversion Projects Using Data-Driven Methods with Multi-Scale Attention Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(6), pages 2919-2941, April.
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Jeongho Han & Joo Hyun Bae, 2024. "Developing an Hourly Water Level Prediction Model for Small- and Medium-Sized Agricultural Reservoirs Using AutoML: Case Study of Baekhak Reservoir, South Korea," Agriculture, MDPI, vol. 15(1), pages 1-21, December.
- Md Abrarul Hoque & Asib Ahmmed Apon & Md Arafat Hassan & Sajal Kumar Adhikary & Md Ariful Islam, 2024. "Enhanced Forecasting of Groundwater Level Incorporating an Exogenous Variable: Evaluating Conventional Multivariate Time Series and Artificial Neural Network Models," Geographies, MDPI, vol. 5(1), pages 1-19, December.
- Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
- Li Wang & Haofei Zou & Jia Su & Ling Li & Sohail Chaudhry, 2013. "An ARIMA‐ANN Hybrid Model for Time Series Forecasting," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 244-259, May.
- Juan de Lucio, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
- Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
- Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
- Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Thiemo Fetzer & Stephan Kyburz, 2024.
"Cohesive Institutions and Political Violence,"
The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," HiCN Working Papers 271, Households in Conflict Network.
- Thiemo Fetzer & Stephan Kyburz, 2019. "Cohesive Institutions and Political Violence," Working Papers 503, Center for Global Development.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," OxCarre Working Papers 210, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," CAGE Online Working Paper Series 377, Competitive Advantage in the Global Economy (CAGE).
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," Empirical Studies of Conflict Project (ESOC) Working Papers 11, Empirical Studies of Conflict Project.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," The Warwick Economics Research Paper Series (TWERPS) 1166, University of Warwick, Department of Economics.
- Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
2023 Annual Meeting, July 23-25, Washington D.C.
335648, Agricultural and Applied Economics Association.
- Dang, Hai-Anh H & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Sascha O. Becker & Thiemo Fetzer, 2018.
"Has Eastern European Migration Impacted UK-born Workers?,"
CAGE Online Working Paper Series
376, Competitive Advantage in the Global Economy (CAGE).
- Becker, Sascha O. & Fetzer, Thiemo, 2018. "Has Eastern European Migration Impacted UK-born Workers?," The Warwick Economics Research Paper Series (TWERPS) 1165, University of Warwick, Department of Economics.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Gharad Bryan & Dean Karlan & Adam Osman, 2024.
"Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment,"
American Economic Review, American Economic Association, vol. 114(9), pages 2825-2860, September.
- Gharad T. Bryan & Dean Karlan & Adam Osman, 2021. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," NBER Working Papers 29311, National Bureau of Economic Research, Inc.
- Bryan, Gharad & Karlan, Dean & Osman, Adam, 2024. "Big loans to small businesses: predicting winners and losers in an entrepreneurial lending experiment," LSE Research Online Documents on Economics 120637, London School of Economics and Political Science, LSE Library.
- Bryan, Gharad & Karlan, Dean & Osman, Adam, 2022. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," CEPR Discussion Papers 16573, C.E.P.R. Discussion Papers.
- Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1843-:d:742847. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1843-d742847.html