IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i2d10.1007_s11269-024-03990-x.html
   My bibliography  Save this article

Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches

Author

Listed:
  • Issam Rehamnia

    (Badji-Mokhtar Annaba University)

  • Amin Mahdavi-Meymand

    (Polish Academy of Sciences)

Abstract

Accurate estimation of reservoir water level fluctuation (WLF) is crucial for effective dam operation and environmental management. In this study, seven machine learning (ML) models, including conventional, integrated swarm, and ensemble learning methods, were employed to estimate daily reservoir WLF. The models comprise multi-linear regression (MLR), shallow neural network (SNN), deep neural network (DNN), support vector regression (SVR) integrated with homonuclear molecules optimization (HMO) and particle swarm optimization (PSO) meta-heuristic algorithms, classification and regression tree (CART), and random forest (RF). These models were trained and evaluated using in situ data from three embankment dams in Algeria: the Kramis dam, the Bougous dam, and the Fontaine Gazelles dam. Performance evaluation was conducted using statistical indices, scatter plots, violin plots, and Taylor diagrams. The results revealed superior prediction accuracy for the Fontaine Gazelles dam compared to Kramis and Bougous dams. Particularly, the RF, DNN, and SVR-HMO models exhibited consistent and excellent predictive performance for WLF at the Fontaine Gazelles dam with RMSE values of 0.502 m, 0.536 m, and 0.57 m, respectively. The RF model demonstrates remarkable accuracy across all three case studies. This can be attributed to the ensemble structure of RF, as evidenced by the results. This study underscores the significance of considering factors such as seepage flow intensity in understanding WLF variability. Furthermore, the proposed ML models offer promising capabilities in WLF prediction, highlighting their potential utility in enhancing reservoir management practices and addressing the limitations of traditional regression models. Keys words. Embankment dam, Water level fluctuations, Seepage, Artificial neural network, meta-heuristic algorithm.

Suggested Citation

  • Issam Rehamnia & Amin Mahdavi-Meymand, 2025. "Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 779-794, January.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:2:d:10.1007_s11269-024-03990-x
    DOI: 10.1007/s11269-024-03990-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03990-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03990-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linqing Gao & Dengzhe Ha & Litao Ma & Jiqiang Chen, 2024. "The prediction model of water level in front of the check gate of the LSTM neural network based on AIW-CLPSO," Journal of Combinatorial Optimization, Springer, vol. 47(2), pages 1-17, March.
    2. Abdus Samad Azad & Rajalingam Sokkalingam & Hanita Daud & Sajal Kumar Adhikary & Hifsa Khurshid & Siti Nur Athirah Mazlan & Muhammad Babar Ali Rabbani, 2022. "Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    3. Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
    4. Jingwei Huang & Hui Qin & Yongchuan Zhang & Dongkai Hou & Sipeng Zhu & Pingan Ren, 2023. "Short-term Prediction Method of Reservoir Downstream Water Level Under Complicated Hydraulic Influence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4475-4490, September.
    5. Monidipa Das & Soumya K. Ghosh & V. M. Chowdary & A. Saikrishnaveni & R. K. Sharma, 2016. "A Probabilistic Nonlinear Model for Forecasting Daily Water Level in Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3107-3122, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    2. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    3. Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
    4. Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    5. Huang, Jingwei & Qin, Hui & Shen, Keyan & Yang, Yuqi & Jia, Benjun, 2024. "Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach," Energy, Elsevier, vol. 305(C).
    6. Jeongho Han & Joo Hyun Bae, 2024. "Developing an Hourly Water Level Prediction Model for Small- and Medium-Sized Agricultural Reservoirs Using AutoML: Case Study of Baekhak Reservoir, South Korea," Agriculture, MDPI, vol. 15(1), pages 1-21, December.
    7. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    8. Adam P. Piotrowski & Maciej J. Napiorkowski & Monika Kalinowska & Jaroslaw J. Napiorkowski & Marzena Osuch, 2016. "Are Evolutionary Algorithms Effective in Calibrating Different Artificial Neural Network Types for Streamwater Temperature Prediction?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1217-1237, February.
    9. Martín Alfredo Legarreta-González & César A. Meza-Herrera & Rafael Rodríguez-Martínez & Darithsa Loya-González & Carlos Servando Chávez-Tiznado & Viridiana Contreras-Villarreal & Francisco Gerardo Vél, 2024. "Selecting a Time-Series Model to Predict Drinking Water Extraction in a Semi-Arid Region in Chihuahua, Mexico," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    10. Mohammad Najafzadeh & Ahmed Sattar, 2015. "Neuro-Fuzzy GMDH Approach to Predict Longitudinal Dispersion in Water Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2205-2219, May.
    11. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    12. Monidipa Das & Soumya K. Ghosh & V. M. Chowdary & A. Saikrishnaveni & R. K. Sharma, 2016. "A Probabilistic Nonlinear Model for Forecasting Daily Water Level in Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3107-3122, July.
    13. Imad Antoine Ibrahim, 2020. "Legal Implications of the Use of Big Data in the Transboundary Water Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1139-1153, February.
    14. Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
    15. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.
    16. Yuxin Zhu & Jianzhong Zhou & Yongchuan Zhang & Zhiqiang Jiang & Benjun Jia & Wei Fang, 2022. "Optimal Energy Storage Operation Chart and Output Distribution of Cascade Reservoirs Based on Operating Rules Derivation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5751-5766, November.
    17. Md Abrarul Hoque & Asib Ahmmed Apon & Md Arafat Hassan & Sajal Kumar Adhikary & Md Ariful Islam, 2024. "Enhanced Forecasting of Groundwater Level Incorporating an Exogenous Variable: Evaluating Conventional Multivariate Time Series and Artificial Neural Network Models," Geographies, MDPI, vol. 5(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:2:d:10.1007_s11269-024-03990-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.