Author
Abstract
Accurate estimation of reservoir water level fluctuation (WLF) is crucial for effective dam operation and environmental management. In this study, seven machine learning (ML) models, including conventional, integrated swarm, and ensemble learning methods, were employed to estimate daily reservoir WLF. The models comprise multi-linear regression (MLR), shallow neural network (SNN), deep neural network (DNN), support vector regression (SVR) integrated with homonuclear molecules optimization (HMO) and particle swarm optimization (PSO) meta-heuristic algorithms, classification and regression tree (CART), and random forest (RF). These models were trained and evaluated using in situ data from three embankment dams in Algeria: the Kramis dam, the Bougous dam, and the Fontaine Gazelles dam. Performance evaluation was conducted using statistical indices, scatter plots, violin plots, and Taylor diagrams. The results revealed superior prediction accuracy for the Fontaine Gazelles dam compared to Kramis and Bougous dams. Particularly, the RF, DNN, and SVR-HMO models exhibited consistent and excellent predictive performance for WLF at the Fontaine Gazelles dam with RMSE values of 0.502 m, 0.536 m, and 0.57 m, respectively. The RF model demonstrates remarkable accuracy across all three case studies. This can be attributed to the ensemble structure of RF, as evidenced by the results. This study underscores the significance of considering factors such as seepage flow intensity in understanding WLF variability. Furthermore, the proposed ML models offer promising capabilities in WLF prediction, highlighting their potential utility in enhancing reservoir management practices and addressing the limitations of traditional regression models. Keys words. Embankment dam, Water level fluctuations, Seepage, Artificial neural network, meta-heuristic algorithm.
Suggested Citation
Issam Rehamnia & Amin Mahdavi-Meymand, 2025.
"Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 779-794, January.
Handle:
RePEc:spr:waterr:v:39:y:2025:i:2:d:10.1007_s11269-024-03990-x
DOI: 10.1007/s11269-024-03990-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:2:d:10.1007_s11269-024-03990-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.