The prediction model of water level in front of the check gate of the LSTM neural network based on AIW-CLPSO
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-023-01101-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
- Bun Theang Ong & Masao Fukushima, 2015. "Automatically Terminated Particle Swarm Optimization with Principal Component Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 171-194.
- Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
- Shuangxin Wang & Guibin Tian & Dingli Yu & Yijiang Lin, 2015. "Dynamic Particle Swarm Optimization with Any Irregular Initial Small-World Topology," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 6(4), pages 1-23, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Issam Rehamnia & Amin Mahdavi-Meymand, 2025. "Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 779-794, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
- Wang, Fu-Kwun & Kebede, Getnet Awoke & Lo, Shih-Che & Woldegiorgis, Bereket Haile, 2024. "An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction," Energy, Elsevier, vol. 308(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
- Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
- Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
- Chen, Qian & He, Peng & Yu, Chuanjin & Zhang, Xiaochi & He, Jiayong & Li, Yongle, 2023. "Multi-step short-term wind speed predictions employing multi-resolution feature fusion and frequency information mining," Renewable Energy, Elsevier, vol. 215(C).
- Guangsen Wei & Weidong Chen & Nima Dongzhou, 2025. "Enhancing Sustainable Development Through Sentiment Analysis of Public Digital Resources: A PSO-LSTM Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 581-600, March.
- Liu, Zixi & Ruan, Guanqiang & Tian, Yupeng & Hu, Xing & Yan, Rong & Yang, Kuo, 2024. "A real-world battery state of charge prediction method based on a lightweight mixer architecture," Energy, Elsevier, vol. 311(C).
- Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
- Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
- Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
- Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
- Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
- Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
- Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
- Zhou, Daixuan & Liu, Yujin & Wang, Xu & Wang, Fuxing & Jia, Yan, 2025. "Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM," Energy, Elsevier, vol. 318(C).
- Abdel-Rahman Hedar & Wael Deabes & Hesham H. Amin & Majid Almaraashi & Masao Fukushima, 2022. "Global sensing search for nonlinear global optimization," Journal of Global Optimization, Springer, vol. 82(4), pages 753-802, April.
More about this item
Keywords
Particle swarm optimization; Long short term memory neural network; Adaptive inertia weight; Comprehensive learning particle swarm optimization; Water level prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:2:d:10.1007_s10878-023-01101-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.