IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4364-d1725824.html
   My bibliography  Save this article

SOC Estimation for Lithium-Ion Batteries Based on Weighted Multi-Innovation Sage–Husa Adaptive EKF

Author

Listed:
  • Weihua Song

    (School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, China)

  • Ranran Liu

    (School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213000, China)

  • Xiaona Jin

    (School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, China)

  • Wei Guo

    (School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213000, China)

Abstract

In lithium-ion battery management systems (BMSs), accurate state of charge (SOC) estimation is essential for the stable operation of BMSs. Furthermore, the accuracy of SOC estimation is significantly influenced by the precision of battery model parameters. To improve the SOC estimation accuracy, this paper focuses on the second-order RC equivalent circuit model, firstly designs a simple and reliable improved adaptive forgetting factor (IAFF) regulation mechanism, and proposes the improved adaptive forgetting factor recursive least squares (IAFFRLS) algorithm, which not only improves the accuracy of parameter identification, but also exhibits excellent performance in anti-interference. Secondly, based on the identified model, a weighted multi-innovation improved Sage–Husa adaptive extended Kalman filter (WMISAEKF) algorithm is proposed to solve the problem of filter divergence caused by noise covariance updating. It fully utilizes historical innovations to reasonably allocate innovation weights to achieve accurate SOC estimation. Compared with the VFFRLS algorithm and AFFRLS algorithm, the IAFFRLS algorithm reduces the root mean square error (RMSE) by 29.30% and 19.29%, respectively, and the RMSE under noise interference is decreased by 82.37% and 78.59%, respectively. Based on the identified model for SOC estimation, the WMISAEKF algorithm reduces the RMSE by 77.78%, compared to the EKF algorithm. Furthermore, the WMISAEKF algorithm could still converge under different levels of noise interference and incorrect initial SOC values, which proves that the proposed algorithm has good stability and robustness. Simulation results verify that the parameter identification algorithm proposed in this paper demonstrates higher identification accuracy and anti-interference performance. The proposed SOC estimation algorithm has higher estimation accuracy and good robustness, which provides a new practical support for extending battery life.

Suggested Citation

  • Weihua Song & Ranran Liu & Xiaona Jin & Wei Guo, 2025. "SOC Estimation for Lithium-Ion Batteries Based on Weighted Multi-Innovation Sage–Husa Adaptive EKF," Energies, MDPI, vol. 18(16), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4364-:d:1725824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yigang Li & Hongzhong Qi & Xinglei Shi & Qifei Jian & Fengchong Lan & Jiqing Chen, 2024. "A Physics-Based Equivalent Circuit Model and State of Charge Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 17(15), pages 1-31, July.
    2. Da Li & Lu Liu & Chuanxu Yue & Xiaojin Gao & Yunhai Zhu, 2025. "Real-Time Estimation of the State of Charge of Lithium Batteries Under a Wide Temperature Range," Energies, MDPI, vol. 18(7), pages 1-19, April.
    3. Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
    4. Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
    5. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    6. Lim, KaiChin & Bastawrous, Hany Ayad & Duong, Van-Huan & See, Khay Wai & Zhang, Peng & Dou, Shi Xue, 2016. "Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles," Applied Energy, Elsevier, vol. 169(C), pages 40-48.
    7. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    8. Li Zhang & Min Zheng & Dajun Du & Yihuan Li & Minrui Fei & Yuanjun Guo & Kang Li, 2020. "State-of-Charge Estimation of Lithium-Ion Battery Pack Based on Improved RBF Neural Networks," Complexity, Hindawi, vol. 2020, pages 1-10, December.
    9. Xiangdong Sun & Jingrun Ji & Biying Ren & Chenxue Xie & Dan Yan, 2019. "Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery," Energies, MDPI, vol. 12(12), pages 1-15, June.
    10. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    11. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    12. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    3. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    4. Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    5. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    6. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    7. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    9. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    10. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    11. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    12. Liu, Zheng & Yao, Linfeng & Huang, Wenjing & Jiang, Yanjun & Qiu, Siyuan & Tang, Xiaofeng, 2025. "Robust battery state of charge estimation incorporating modified correntropy Kalman filter with adaptive kernel width and weighted multi-innovation compensation," Energy, Elsevier, vol. 322(C).
    13. Huang, Boyan & Li, Hongxu & Sun, Jiangbo & Sun, Jiawen & Tian, Xiaolong & Song, Kai & Zhang, Shuai & Wang, Zhen, 2025. "Robust SOC estimation for lithium-ion batteries: Combination of GRU and FOMIAUKF approach with an improved state transition matrix," Energy, Elsevier, vol. 328(C).
    14. Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
    15. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    16. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    17. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    18. Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
    19. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    20. Chianese, Giovanni & Iannucci, Luigi & Veneri, Ottorino & Capasso, Clemente, 2025. "Real-time estimation of battery SoC through neural networks trained with model-based datasets: Experimental implementation and performance comparison," Applied Energy, Elsevier, vol. 389(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4364-:d:1725824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.