Author
Listed:
- Li Zhang
- Min Zheng
- Dajun Du
- Yihuan Li
- Minrui Fei
- Yuanjun Guo
- Kang Li
Abstract
Lithium-ion batteries have been widely used as energy storage systems and in electric vehicles due to their desirable balance of both energy and power densities as well as continual falling price. Accurate estimation of the state-of-charge (SOC) of a battery pack is important in managing the health and safety of battery packs. This paper proposes a compact radial basis function (RBF) neural model to estimate the state-of-charge (SOC) of lithium battery packs. Firstly, a suitable input set strongly correlated with the package SOC is identified from directly measured voltage, current, and temperature signals by a fast recursive algorithm (FRA). Secondly, a RBF neural model for battery pack SOC estimation is constructed using the FRA strategy to prune redundant hidden layer neurons. Then, the particle swarm optimization (PSO) algorithm is used to optimize the kernel parameters. Finally, a conventional RBF neural network model, an improved RBF neural model using the two stage method, and a least squares support vector machine (LSSVM) model are also used to estimate the battery SOC as a comparative study. Simulation results show that generalization error of SOC estimation using the novel RBF neural network model is less than half of that using other methods. Furthermore, the model training time is much less than the LSSVM method and the improved RBF neural model using the two-stage method.
Suggested Citation
Li Zhang & Min Zheng & Dajun Du & Yihuan Li & Minrui Fei & Yuanjun Guo & Kang Li, 2020.
"State-of-Charge Estimation of Lithium-Ion Battery Pack Based on Improved RBF Neural Networks,"
Complexity, Hindawi, vol. 2020, pages 1-10, December.
Handle:
RePEc:hin:complx:8840240
DOI: 10.1155/2020/8840240
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8840240. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.