IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925005136.html
   My bibliography  Save this article

Real-time estimation of battery SoC through neural networks trained with model-based datasets: Experimental implementation and performance comparison

Author

Listed:
  • Chianese, Giovanni
  • Iannucci, Luigi
  • Veneri, Ottorino
  • Capasso, Clemente

Abstract

Data-driven methods have been widely investigated to estimate battery SoC due to their great potential in solving regression problems. However, expensive experimental campaigns are generally required to collect large training datasets. To address this need, this paper demonstrates the advantages of using a validated battery simulation model to easily generate data for training neural networks (NNs) estimating SoC. Such a procedure drastically reduces the number of experiments, which are only required to calibrate/validate a physics-based battery model and to test the NNs in real driving operative conditions. A Li-NMC storage cell for automotive applications was considered as case study to verify the presented methodology. The analysis was performed in a wide range of operative conditions in terms of temperatures and load dynamics. Offline tests, based on data collected during experiments, showed that the trained NNs were able to predict the SoC with an accuracy comparable to NNs trained with standard experimental-based procedures. In the end, the trained NNs were implemented on a microcontroller to prove their real-time applicability in BMS boards.

Suggested Citation

  • Chianese, Giovanni & Iannucci, Luigi & Veneri, Ottorino & Capasso, Clemente, 2025. "Real-time estimation of battery SoC through neural networks trained with model-based datasets: Experimental implementation and performance comparison," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005136
    DOI: 10.1016/j.apenergy.2025.125783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.