IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16747-d1002927.html
   My bibliography  Save this article

Life Cycle Sustainability Assessment of Single Stream and Multi-Stream Waste Recycling Systems

Author

Listed:
  • Costantino Berardocco

    (School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, USA)

  • Hannah Delawter

    (School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, USA)

  • Thomas Putzu

    (School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, USA)

  • Larson Curtis Wolfe

    (School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, USA)

  • Hao Zhang

    (School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, USA)

Abstract

An increasing trend of moving towards single-stream waste management systems is occurring in many municipalities. This is because of the ability to process greater quantities of materials, minimize material management costs, and maximize recycling convenience and participation. Research on evaluating comprehensive sustainability (economic, environmental, and social) of the two streams is very limited. This study looks to gain an in-depth understanding of two waste management systems and assist in the decision-making processes of municipalities. To achieve this, the study provides a framework for evaluating economic, environmental, and social impacts as well as a sustainability assessment of single- vs. multi-stream waste management systems within the scope of a typical North American college town. A life cycle assessment framework was employed. The scope of the assessment includes production of materials, collection, sorting, and processes included in a material recovery facility (MRF). The functional unit is 1 ton of municipal solid waste. The case study was conducted on a North American college city during its transition from multi-stream recycling to single-stream recycling. The sustainability assessment result of the case study reveals that the single-stream recycling collection cost is slightly lower (USD 86.96/ton) than the multi-stream recycling collection cost (USD 89/ton). Additionally, the GHG emissions for the single-stream recycling system (10.56 kg CO 2 eq/ton) are slightly higher than for the multi-stream recycling system (9.67 kg CO 2 eq/ton). This is due to the complexity of the processes involved in the MRF. Nevertheless, recycling rate is the determining factor for life cycle GHG emissions and costs. Municipal solid waste policymakers could benefit from this study by using the framework and study results for tactical and strategic decision-making.

Suggested Citation

  • Costantino Berardocco & Hannah Delawter & Thomas Putzu & Larson Curtis Wolfe & Hao Zhang, 2022. "Life Cycle Sustainability Assessment of Single Stream and Multi-Stream Waste Recycling Systems," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16747-:d:1002927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason Bell & Joel Huber & W. Kip Viscusi, 2017. "Fostering Recycling Participation in Wisconsin Households through Single-Stream Programs," Land Economics, University of Wisconsin Press, vol. 93(3), pages 481-502.
    2. Hong, R.J. & Wang, G.F. & Guo, R.Z. & Cheng, X. & Liu, Q. & Zhang, P.J. & Qian, G.R., 2006. "Life cycle assessment of BMT-based integrated municipal solid waste management: Case study in Pudong, China," Resources, Conservation & Recycling, Elsevier, vol. 49(2), pages 129-146.
    3. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    4. Omer Bafail, 2022. "A DEMATEL Framework for Modeling Cause-and-Effect Relationships of Inbound Contamination in Single-Stream Recycling Programs," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sevigné Itoiz, E. & Gasol, C.M & Farreny, R. & Rieradevall, J. & Gabarrell, X., 2013. "CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries," Energy Policy, Elsevier, vol. 56(C), pages 623-632.
    2. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    3. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    4. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. G. Perkoulidis & A. Malamakis & G. Banias & N. Moussiopoulos, 2022. "Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions," Circular Economy and Sustainability,, Springer.
    9. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    10. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    11. Jamie E. Filer & Justin D. Delorit & Andrew J. Hoisington & Steven J. Schuldt, 2020. "Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    12. Gionata Castaldi & Grazia Cecere & Mariangela Zoli, 2021. "“Smoke on the beach”: on the use of economic vs behavioral policies to reduce environmental pollution by cigarette littering," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 1025-1048, October.
    13. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
    14. Fazeli, Alireza & Bakhtvar, Farzaneh & Jahanshaloo, Leila & Che Sidik, Nor Azwadi & Bayat, Ali Esfandyari, 2016. "Malaysia׳s stand on municipal solid waste conversion to energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1007-1016.
    15. Viscusi, W. Kip & Huber, Joel & Bell, Jason, 2023. "Changes in household recycling behavior: Evidence from panel data," Ecological Economics, Elsevier, vol. 208(C).
    16. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    17. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    18. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    19. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    20. Tao Li & Yimiao Song & Jing Shen, 2019. "Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method," Sustainability, MDPI, vol. 11(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16747-:d:1002927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.