IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2208-d331778.html
   My bibliography  Save this article

Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure

Author

Listed:
  • Jamie E. Filer

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

  • Justin D. Delorit

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

  • Andrew J. Hoisington

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
    Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO 80045, USA
    Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA)

  • Steven J. Schuldt

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

Abstract

Remote communities such as rural villages, post-disaster housing camps, and military forward operating bases are often located in remote and hostile areas with limited or no access to established infrastructure grids. Operating these communities with conventional assets requires constant resupply, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote community planners can mitigate these negative impacts by selecting sustainable technologies that minimize resource consumption and emissions. However, the alternatives often come at a higher procurement cost and mobilization requirement. To assist planners with this challenging task, this paper presents the development of a novel infrastructure sustainability assessment model capable of generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle costs over the community’s anticipated lifespan. Model performance was evaluated using a case study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and 48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist planners in identifying optimal combinations of infrastructure alternatives that minimize negative sustainability impacts, leading to remote communities that are more self-sufficient with reduced emissions and costs.

Suggested Citation

  • Jamie E. Filer & Justin D. Delorit & Andrew J. Hoisington & Steven J. Schuldt, 2020. "Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2208-:d:331778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharon Borglin & Jennifer Shore & Heather Worden & Ravi Jain, 2010. "An overview of the sustainability of solid waste management at military installations," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(1), pages 51-83.
    2. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    2. Le Thanh Tiep & Ngo Quang Huan & Tran Thi Thuy Hong, 2020. "The Impact of Renewable Energy on Sustainable Economic Growth in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 359-369.
    3. Jay Pearson & Torrey Wagner & Justin Delorit & Steven Schuldt, 2020. "Cost Analysis of Optimized Islanded Energy Systems in a Dispersed Air Base Conflict," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. S. M. Amin Hosseini & Rama Ghalambordezfooly & Albert de la Fuente, 2022. "Sustainability Model to Select Optimal Site Location for Temporary Housing Units: Combining GIS and the MIVES–Knapsack Model," Sustainability, MDPI, vol. 14(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sevigné Itoiz, E. & Gasol, C.M & Farreny, R. & Rieradevall, J. & Gabarrell, X., 2013. "CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries," Energy Policy, Elsevier, vol. 56(C), pages 623-632.
    2. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    3. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    4. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    5. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    6. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    7. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
    8. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    9. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    10. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    11. Krzysztof Pikoń & Piotr Krawczyk & Krzysztof Badyda & Magdalena Bogacka, 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology," Energies, MDPI, vol. 12(19), pages 1-11, September.
    12. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    13. Giulia Costa & Alessio Lieto & Francesco Lombardi, 2019. "LCA of a Consortium-Based MSW Management System to Quantify the Decrease in Environmental Impacts Achieved for Increasing Separate Collection Rates and Other Modifications," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    14. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.
    15. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    16. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    17. Martalò, Giorgio & Bianchi, Cesidio & Buonomo, Bruno & Chiappini, Massimo & Vespri, Vincenzo, 2020. "Mathematical modeling of oxygen control in biocell composting plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 105-119.
    18. Zygmunt Kowalski & Joanna Kulczycka & Agnieszka Makara & Roland Verhé & Guy De Clercq, 2022. "Assessment of Energy Recovery from Municipal Waste Management Systems Using Circular Economy Quality Indicators," Energies, MDPI, vol. 15(22), pages 1-22, November.
    19. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    20. Vandermeersch, T. & Alvarenga, R.A.F. & Ragaert, P. & Dewulf, J., 2014. "Environmental sustainability assessment of food waste valorization options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 57-64.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2208-:d:331778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.