IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2810-d231788.html
   My bibliography  Save this article

LCA of a Consortium-Based MSW Management System to Quantify the Decrease in Environmental Impacts Achieved for Increasing Separate Collection Rates and Other Modifications

Author

Listed:
  • Giulia Costa

    (Laboratory of Environmental Engineering, DICII, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

  • Alessio Lieto

    (Laboratory of Environmental Engineering, DICII, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

  • Francesco Lombardi

    (Laboratory of Environmental Engineering, DICII, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

Abstract

In this study, the collection, transport, and treatment phases (including the management of products and processing residues) of six fractions of municipal solid waste (MSW) generated in the Sinistra Piave Basin (Veneto, Italy), a consortium of 44 municipalities, were analyzed by life-cycle assessment (LCA). Specifically, two different scenarios were assessed for paper and cardboard, glass, multi-material (plastics and metals), food waste, garden waste, and dry residual fraction management, one referring to the year 2015 and the other to 2004. The primary aim was to investigate what consequences the increase in separate collection rates progressively achieved by the consortium (65% in 2004 versus to 80% in 2015) exerted on the management system and its potential environmental impacts. For each scenario, the type of separate collection method employed (door-to-door in 2015, and mixed door-to-door and curbside collection in 2004), the collected amounts, the geographic location of the main sorting/treatment plants, and the type of treatments applied to manage the products and processing residues were considered. The results of the study indicate that, among the variations that occurred in the management system for the two considered years, the increase in separate collection rate achieved was the factor that most affected all of the potential environmental impacts taken into account. In particular, for the 2015 scenario, differently from the 2004 one, all of the categories considered (apart from ecotoxicity) were negative, indicating savings instead of impacts. Treatment was the stage that by far mostly affected potential environmental savings, with regard to paper and cardboard recycling in particular.

Suggested Citation

  • Giulia Costa & Alessio Lieto & Francesco Lombardi, 2019. "LCA of a Consortium-Based MSW Management System to Quantify the Decrease in Environmental Impacts Achieved for Increasing Separate Collection Rates and Other Modifications," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2810-:d:231788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Cristina Rada & Claudio Zatelli & Lucian Ionel Cioca & Vincenzo Torretta, 2018. "Selective Collection Quality Index for Municipal Solid Waste Management," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    2. Valentino Tascione & Andrea Raggi, 2012. "Identification and Selection of Alternative Scenarios in LCA Studies of Integrated Waste Management Systems: A Review of Main Issues and Perspectives," Sustainability, MDPI, vol. 4(10), pages 1-13, September.
    3. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2020. "The Importance of the Microclimatic Conditions Inside and Outside of Plant Buildings in Odorants Emission at Municipal Waste Biogas Installations," Energies, MDPI, vol. 13(23), pages 1-27, December.
    2. Mar Carlos & Antonio Gallardo & Natalia Edo-Alcón & Juan Ramón Abaso, 2019. "Influence of the Municipal Solid Waste Collection System on the Time Spent at a Collection Point: A Case Study," Sustainability, MDPI, vol. 11(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sevigné Itoiz, E. & Gasol, C.M & Farreny, R. & Rieradevall, J. & Gabarrell, X., 2013. "CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries," Energy Policy, Elsevier, vol. 56(C), pages 623-632.
    2. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    3. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    4. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. G. Perkoulidis & A. Malamakis & G. Banias & N. Moussiopoulos, 2022. "Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions," Circular Economy and Sustainability,, Springer.
    9. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    10. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    11. Jamie E. Filer & Justin D. Delorit & Andrew J. Hoisington & Steven J. Schuldt, 2020. "Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    12. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
    13. Fazeli, Alireza & Bakhtvar, Farzaneh & Jahanshaloo, Leila & Che Sidik, Nor Azwadi & Bayat, Ali Esfandyari, 2016. "Malaysia׳s stand on municipal solid waste conversion to energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1007-1016.
    14. Julio César Puche-Regaliza & Santiago Porras-Alfonso & Alfredo Jiménez & Santiago Aparicio-Castillo & Pablo Arranz-Val, 2021. "Exploring determinants of public satisfaction with urban solid waste collection services quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9927-9948, July.
    15. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    16. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    17. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    18. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    19. Tao Li & Yimiao Song & Jing Shen, 2019. "Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    20. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2810-:d:231788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.