IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16722-d1002412.html
   My bibliography  Save this article

Five-Dimensional Straw Utilization Model and Its Impact on Carbon Emission Reduction in China

Author

Listed:
  • Ning Sun

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    These authors contributed equally to this work.)

  • Chunyu Gao

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    These authors contributed equally to this work.)

  • Yahui Ding

    (National Engineering Research Center for Information Technology Research in Agricultural, Beijing 100097, China)

  • Yuyun Bi

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Patience Afi Seglah

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yajing Wang

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

Enormous quantities of straw in China are burnt in open fields or discarded randomly, leading to a serious waste of biomass resources and environmental pollution. To accelerate sustainable development, straw resources must be used efficiently and reduce carbon emissions. Based on a systematic literature review, this study summarizes China’s latest development in straw utilization. It analyzes the accounting methods, carbon emission reduction effects and potential of straw utilization. The study highlights that straw utilization in China can be categorized into five-dimensional straw utilization models (FDSUM). The cost of collection, storage and transportation, and straw utilization technology are the main factors affecting straw utilization. FDSUM contributes greatly to agricultural carbon reduction. Straw-to-fertilizer has the highest contribution, and straw-to-fuel has the largest carbon emission reduction potential. The carbon emission reduction from straw–to-fuel utilization in 2020 was 63.43 × 10 9 kg CO 2 . In addition, China has not developed a standardized carbon accounting method for straw utilization. China needs to prioritize straw-to-fertilizer and straw-to-fuel conversion and develop low-carbon production technologies. This study will serve as a reference to further improve the utilization of straw in China and provide preliminary ideas for establishing a unified national carbon accounting system for straw utilization.

Suggested Citation

  • Ning Sun & Chunyu Gao & Yahui Ding & Yuyun Bi & Patience Afi Seglah & Yajing Wang, 2022. "Five-Dimensional Straw Utilization Model and Its Impact on Carbon Emission Reduction in China," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16722-:d:1002412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling Sun & Zhixu Sun & Juan Hu & Opoku-Kwanowaa Yaa & Jinggui Wu, 2021. "Decomposition Characteristics, Nutrient Release, and Structural Changes of Maize Straw in Dryland Farming under Combined Application of Animal Manure," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    2. Yang Yang & Ji-Qin Ni & Wanbin Zhu & Guanghui Xie, 2019. "Life Cycle Assessment of Large-scale Compressed Bio-natural Gas Production in China: A Case Study on Manure Co-digestion with Corn Stover," Energies, MDPI, vol. 12(3), pages 1-16, January.
    3. Jiale Zhao & Yun Lu & Hongli Tian & Honglei Jia & Mingzhuo Guo, 2019. "Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    4. Guofeng Wang & Maolin Liao & Jie Jiang, 2020. "Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    5. Song, Shizhong & Liu, Pei & Xu, Jing & Chong, Chinhao & Huang, Xianzheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2017. "Life cycle assessment and economic evaluation of pellet fuel from corn straw in China: A case study in Jilin Province," Energy, Elsevier, vol. 130(C), pages 373-381.
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shibin Wen & Yuxiang Hu & Hongman Liu, 2022. "Measurement and Spatial–Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
    2. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    3. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    5. Kailun Fang & Suzana Ariff Azizan & Yifei Wu, 2023. "Low-Carbon Community Regeneration in China: A Case Study in Dadong," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    6. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    7. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    9. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    10. Sandra González-Rodríguez & Ana Arias & Gumersindo Feijoo & Maria Teresa Moreira, 2022. "Modelling and Environmental Profile Associated with the Valorization of Wheat Straw as Carbon Source in the Biotechnological Production of Manganese Peroxidase," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    11. Ying Wang & Juan Yang & Caiquan Duan, 2023. "Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    12. Xieqihua Liu & Yongmei Ye & Dongdong Ge & Zhen Wang & Bin Liu, 2022. "Study on the Evolution and Trends of Agricultural Carbon Emission Intensity and Agricultural Economic Development Levels—Evidence from Jiangxi Province," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    13. Wu, Haijiang & Wang, Yu, 2024. "Integrating green resources and mineral dependency to address the urban-rural divide in China's carbon neutrality transition," Resources Policy, Elsevier, vol. 88(C).
    14. Xingmin Liu & Beibei Qin & Yong Wu & Ran Zou & Qing Ye, 2021. "Study on Rural Residents’ Satisfaction with the Clean Energy Heating Program in Northern China—A Case Study of Shandong Province," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    15. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    16. Hongpeng Guo & Shuang Xu & Xiaotong Wang & Wen Shu & Jia Chen & Chulin Pan & Cheng Guo, 2021. "Driving Mechanism of Farmers’ Utilization Behaviors of Straw Resources—An Empirical Study in Jilin Province, the Main Grain Producing Region in the Northeast Part of China," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
    17. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
    18. Ji-Qin Ren & Ya-Wen Yang & Yuan-Ying Chi, 2022. "Research on Straw-Based High-Quality Energy in China under the Background of Carbon Neutrality," Energies, MDPI, vol. 15(5), pages 1-14, February.
    19. Jinming Liu & Changhao Zeng & Na Wang & Jianfei Shi & Bo Zhang & Changyu Liu & Yong Sun, 2021. "Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics," Energies, MDPI, vol. 14(5), pages 1-17, March.
    20. Mengyao Xia & Di Zeng & Qi Huang & Xinjian Chen, 2022. "Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020," Agriculture, MDPI, vol. 12(11), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16722-:d:1002412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.