IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13948-d954541.html
   My bibliography  Save this article

What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?

Author

Listed:
  • Hao-Ran Wang

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Tian-Tian Feng

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China
    Key Laboratory of Strategic Studies, Ministry of Land and Resources, Beijing 100083, China)

  • Yan Li

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Hui-Min Zhang

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Jia-Jie Kong

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

Abstract

Green hydrogen has become the key to social low-carbon transformation and is fully linked to zero carbon emissions. The carbon emissions trading market is a policy tool used to control carbon emissions using a market-oriented mechanism. Building a modular carbon trading center for the hydrogen energy industry would greatly promote the meeting of climate targets. Based on this, a “green hydrogen market—national carbon trading market–electricity market” coupling mechanism is designed. Then, the “green hydrogen market—national carbon trading market–electricity market” mechanism is modeled and simulated using system dynamics. The results are as follows: First, coupling between the green hydrogen market, carbon trading market and electricity market can be realized through green hydrogen certification and carbon quota trading. It is found that the coupling model is feasible through simulation. Second, simulation of the basic scenario finds that multiple-market coupling can stimulate an increase in carbon price, the control of thermal power generation and an increase in green hydrogen production. Finally, the proportion of the green hydrogen certification, the elimination mechanism of outdated units and the quota auction mechanism will help to form a carbon pricing mechanism. This study enriches the green hydrogen trading model and establishes a multiple-market linkage mechanism.

Suggested Citation

  • Hao-Ran Wang & Tian-Tian Feng & Yan Li & Hui-Min Zhang & Jia-Jie Kong, 2022. "What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13948-:d:954541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).
    2. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    3. Bianca Nogrady, 2021. "China launches world’s largest carbon market: but is it ambitious enough?," Nature, Nature, vol. 595(7869), pages 637-637, July.
    4. Dai, Hongchao & Dai, Huaming, 2022. "Green hydrogen production based on the co-combustion of wood biomass and porous media," Applied Energy, Elsevier, vol. 324(C).
    5. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).
    6. Yan, Jingchi, 2021. "The impact of climate policy on fossil fuel consumption: Evidence from the Regional Greenhouse Gas Initiative (RGGI)," Energy Economics, Elsevier, vol. 100(C).
    7. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    2. Lin Wang & Yuping Xing, 2022. "Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual Interactions: A System Dynamics Model," Energies, MDPI, vol. 16(1), pages 1-18, December.
    3. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Hu, Yu & Chi, Yuanying & Zhao, Hao & Zhou, Wenbing, 2022. "The development of renewable energy industry under renewable portfolio standards: From the perspective of provincial resource differences," Energy Policy, Elsevier, vol. 170(C).
    5. Quanliang Ye & Maarten S. Krol & Yuli Shan & Joep F. Schyns & Markus Berger & Klaus Hubacek, 2023. "Allocating capital-associated CO2 emissions along the full lifespan of capital investments helps diffuse emission responsibility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    7. Kim, Pyung & Bae, Hyunhoe, 2022. "Do firms respond differently to the carbon pricing by industrial sector? How and why? A comparison between manufacturing and electricity generation sectors using firm-level panel data in Korea," Energy Policy, Elsevier, vol. 162(C).
    8. Chen, Sai & Ding, Yueting & Song, Yan & Zhang, Ming & Nie, Rui, 2023. "Study on China's energy system resilience under the scenarios of long-term shortage of imported oil," Energy, Elsevier, vol. 270(C).
    9. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    10. Chao Zhang & Yihang Zhao & Huiru Zhao, 2022. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    11. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    13. Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
    14. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    15. Jiang, Qiangqiang & Cai, Baoping & Zhang, Yanping & Xie, Min & Liu, Cuiwei, 2023. "Resilience assessment methodology of natural gas network system under random leakage," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    17. Kramer, Niklas & Lessmann, Christian, 2023. "The Effects of Carbon Trading: Evidence from California’s ETS," MPRA Paper 116796, University Library of Munich, Germany.
    18. Kasper Vrolijk & Misato Sato, 2023. "Quasi-Experimental Evidence on Carbon Pricing," The World Bank Research Observer, World Bank, vol. 38(2), pages 213-248.
    19. Lei, Xu & Xin-gang, Zhao, 2023. "The synergistic effect between Renewable Portfolio Standards and carbon emission trading system: A perspective of China," Renewable Energy, Elsevier, vol. 211(C), pages 1010-1023.
    20. Ying, Zhou & Xin-gang, Zhao & Lei, Xu, 2022. "Supply side incentive under the Renewable Portfolio Standards: A perspective of China," Renewable Energy, Elsevier, vol. 193(C), pages 505-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13948-:d:954541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.