IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11114-d907577.html
   My bibliography  Save this article

A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras

Author

Listed:
  • Menelio Bardales

    (Faculty of Forestry Sciences, National University of Forestry Sciences, Siguatepeque 12111, Honduras)

  • Catherine Bukowski

    (College of Forest Resources and Environmental Conservation, Virginia Tech University, Blacksburg, VA 24061, USA)

  • Valentín Molina-Moreno

    (Department of Management, University of Granada, 18071 Granada, Spain)

  • Francisco Jesús Gálvez-Sánchez

    (Department Business Organization, Catholic University of Murcia, 31007 Murcia, Spain)

  • Ángel Fermín Ramos-Ridao

    (Department of Civil Engineering, Escuela Técnica Superior de Ingenieros de Caminos Canales y Puertos, Campus de Fuentenueva s/n, University of Granada, 18071 Granada, Spain)

Abstract

Forest biomass as a rural sustainable energy source has received much attention in recent years due to its major economic, social, and environmental benefits. This research focuses on an adapted methodology based on parameters of the Evaluation of Ecological Integrity for using site-specific information as a tool for the assessment of forest biomass as a source of rural sustainable energy in Honduras, focusing on the Central American Pine–Oak Forests. The parameters used were Percentage of Forest Cover (FC), Patch Area (AREA), Fractal Dimension Index (FRAC), and Proximity Index (PROX). The goal was an average index rating of 5 for an ecosystem which is intact or in its natural state. The findings showed an ecosystem degradation that was outside the range of acceptable variation with a simple average of 1.75, which is far lower than the target rating of five (5.0); the forest cover loss was 40% of the total area. This surprising finding shows that immediate intervention is required to maintain this ecosystem, and that if action is not taken, the ecosystem will suffer severe degradation. Decision makers must consider this methodology for using site-specific information and ensure that local communities are involved in restoring the ecosystem.

Suggested Citation

  • Menelio Bardales & Catherine Bukowski & Valentín Molina-Moreno & Francisco Jesús Gálvez-Sánchez & Ángel Fermín Ramos-Ridao, 2022. "A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11114-:d:907577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romero-Castro, Noelia & Piñeiro-Chousa, Juan & Pérez-Pico, Ada, 2021. "Dealing with heterogeneity and complexity in the analysis of the willingness to invest in community renewable energy in rural areas," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Jan Banaś & Katarzyna Utnik-Banaś, 2022. "Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management," Energies, MDPI, vol. 15(6), pages 1-8, March.
    3. repec:cdl:glinre:qt6z56v459 is not listed on IDEAS
    4. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    5. Zoe Slattery & Richard Fenner, 2021. "Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    6. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    7. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    8. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Jordi Molas-Gallart & Alejandra Boni & Sandro Giachi & Johan Schot, 2021. "A formative approach to the evaluation of Transformative Innovation Policies [The Need for Reflexive Evaluation Approaches in Development Cooperation]," Research Evaluation, Oxford University Press, vol. 30(4), pages 431-442.
    3. Francisco Gustavo Bautista Carrillo & Daniel Arias-Aranda, 2025. "Technological Adoption Sequences and Sustainable Innovation Performance: A Longitudinal Analysis of Optimal Pathways," Sustainability, MDPI, vol. 17(13), pages 1-24, June.
    4. María Belén Prados-Peña & Francisco Jesús Gálvez-Sánchez & Pedro Núñez-Cacho & Valentín Molina-Moreno, 2024. "Intention to purchase sustainable craft products: a moderated mediation analysis of the adoption of sustainability in the craft sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 775-797, January.
    5. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    6. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    7. Catia Milena Lopes & Annibal José Scavarda & Mauricio Nunes Macedo de Carvalho & André Luis Korzenowski, 2018. "The Business Model and Innovation Analyses: The Sustainable Transition Obstacles and Drivers for the Hospital Supply Chains," Resources, MDPI, vol. 8(1), pages 1-17, December.
    8. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    9. Anna Seravalli, 2023. "Strengthening Urban Labs’ Democratic Aspirations: Nurturing a Listening Capacity to Engage With the Politics of Social Learning," Urban Planning, Cogitatio Press, vol. 8(2), pages 335-346.
    10. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    11. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    12. Olivia Muza & Ramit Debnath, 2020. "Socially inclusive renewable energy transition in sub-Saharan Africa: A social shaping of technology analysis of appliance uptake in Rwanda," Working Papers EPRG2017, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    14. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    15. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Sampsa Hyysalo & Jani Lukkarinen & Paula Kivimaa & Raimo Lovio & Armi Temmes & Mikael Hildén & Tatu Marttila & Karoliina Auvinen & Sofi Perikangas & Allu Pyhälammi & Janne Peljo & Kaisa Savolainen & L, 2019. "Developing Policy Pathways: Redesigning Transition Arenas for Mid-range Planning," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    17. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    18. Jakob Eder & Michaela Trippl, 2019. "Innovation in the periphery: compensation and exploitation strategies," PEGIS geo-disc-2019_07, Institute for Economic Geography and GIScience, Department of Socioeconomics, Vienna University of Economics and Business.
    19. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    20. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11114-:d:907577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.