IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10974-d905107.html
   My bibliography  Save this article

Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems

Author

Listed:
  • Yuanlong Cui

    (School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China)

  • Fan Zhang

    (Griffith School of Engineering and the Built Environment, Griffith University, Brisbane, QLD 4222, Australia)

  • Yiming Shao

    (School of Architecture, Nanjing Tech University, Nanjing 211816, China)

  • Ssennoga Twaha

    (Faculty of Engineering, Kyambogo University, Kampala P.O. Box 01, Uganda)

  • Hui Tong

    (School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China)

Abstract

Road infrastructure is a vital constituent element in the transportation network; however, roadway surface ice and snow accumulation leads to huge traffic accidents in winter. Geothermal roadway energy systems (GRES) and solar roadway energy systems (SRES) can increase or decrease roadway surface temperature for the de-icing and removal of snow in winter, or mitigation of heat in summer. Technology performance and economic evaluation of the GRES and SRES are reviewed in this paper based on numerical and economic models, and experimental analyses. Three crucial aspects of the technology performance assessment, i.e., roadway surface temperature, energy consumption and key factors, are explored in different regions and countries. Economic evaluation approaches for net present values and payback periods of the GRES and SRES are investigated. The recommendations and potential future developments on the two technologies are deliberated; it is demonstrated that the GRES and SRES could increase roadway surface temperature by around 5 °C in winter and decrease it by about 6 °C in summer, with the payback periods of 4 to 8 years and 2.3 to 5 years, respectively.

Suggested Citation

  • Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10974-:d:905107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    2. Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
    3. Anne Mäkiranta & Erkki Hiltunen, 2019. "Utilizing Asphalt Heat Energy in Finnish Climate Conditions," Energies, MDPI, vol. 12(11), pages 1-11, June.
    4. García, Alvaro & Partl, Manfred N., 2014. "How to transform an asphalt concrete pavement into a solar turbine," Applied Energy, Elsevier, vol. 119(C), pages 431-437.
    5. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    6. Han, Chanjuan & Yu, Xiong (Bill), 2018. "An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses," Renewable Energy, Elsevier, vol. 123(C), pages 417-427.
    7. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2015. "A study of the impact of building geometry on the thermal performance of road pavement solar collectors," Energy, Elsevier, vol. 93(P2), pages 2614-2630.
    8. Xu, Huining & Tan, Yiqiu, 2015. "Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids," Energy, Elsevier, vol. 80(C), pages 666-676.
    9. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    10. Liu, Hongwei & Maghoul, Pooneh & Bahari, Ako & Kavgic, Miroslava, 2019. "Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada," Renewable Energy, Elsevier, vol. 136(C), pages 1266-1280.
    11. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    12. Johnsson, Josef & Adl-Zarrabi, Bijan, 2020. "A numerical and experimental study of a pavement solar collector for the northern hemisphere," Applied Energy, Elsevier, vol. 260(C).
    13. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2017. "A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application," Applied Energy, Elsevier, vol. 186(P3), pages 436-449.
    14. Han, Chanjuan & Yu, Xiong (Bill), 2017. "Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: A simulation based analysis," Renewable Energy, Elsevier, vol. 101(C), pages 214-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurullah Kayaci & Baris Burak Kanbur, 2023. "Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    2. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    3. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    4. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    5. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    6. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    7. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    8. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    9. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    10. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    11. O'Hegarty, Richard & Kinnane, Oliver & McCormack, Sarah J., 2017. "Concrete solar collectors for façade integration: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 206(C), pages 1040-1061.
    12. Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).
    13. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    14. Nurullah Kayaci & Baris Burak Kanbur, 2023. "Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    15. Behnam Ghorbani & Arul Arulrajah & Guillermo A. Narsilio & Suksun Horpibulsuk & Apinun Buritatum, 2023. "Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    16. Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
    17. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    18. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    19. Raheb Mirzanamadi & Carl-Eric Hagentoft & Pär Johansson, 2018. "Numerical Investigation of Harvesting Solar Energy and Anti-Icing Road Surfaces Using a Hydronic Heating Pavement and Borehole Thermal Energy Storage," Energies, MDPI, vol. 11(12), pages 1-23, December.
    20. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10974-:d:905107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.