IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp618-641.html
   My bibliography  Save this article

Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment

Author

Listed:
  • Nasir, Diana SNM
  • Pantua, Conrad Allan Jay
  • Zhou, Bochao
  • Vital, Becky
  • Calautit, John
  • Hughes, Ben

Abstract

The Urban Heat Island (UHI) effect is a phenomenon whereby urban areas become warmer than their surrounding rural areas, due to the replacement of vegetation and soil with built surfaces. The increase in urban temperatures can increase energy demand for cooling buildings, elevate emissions of air pollutants, compromise health (overheating) and cause thermal discomfort. Road Pavement Solar Collector (RPSC) system is one of the UHI mitigation strategies that absorbs heat from the road surface and converting the heat into passive thermal energy. This work aims to determine the impact of the RPSC system on the urban air temperature using the Computational Fluid Dynamics (CFD) ANSYS Fluent 19.2 program. The modelling method was initially validated with a laboratory-scale RPSC system. The model was set using the weather and surface temperature data of the hot and humid city of Kuala Lumpur. The influence of the RPSC system embedment; within urban street canyons and outside of the street canyons was investigated. The study also assessed the influence of changing the urban street canyon configuration based on the length and the height of the building rows on the RPSC performance. Based on the conditions modelled and simulation results, the best performance was obtained by embedding the RPSC system within the long and deep street canyon. The results presented here also showed the potential of the RPSC system in mitigating the UHI effect during hot and calm nocturnal period.

Suggested Citation

  • Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:618-641
    DOI: 10.1016/j.renene.2020.07.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    2. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2015. "A study of the impact of building geometry on the thermal performance of road pavement solar collectors," Energy, Elsevier, vol. 93(P2), pages 2614-2630.
    3. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    4. Johnsson, Josef & Adl-Zarrabi, Bijan, 2020. "A numerical and experimental study of a pavement solar collector for the northern hemisphere," Applied Energy, Elsevier, vol. 260(C).
    5. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2017. "A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application," Applied Energy, Elsevier, vol. 186(P3), pages 436-449.
    6. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2023. "Multi-objective optimization for comparative energy and economic analyses of a novel evacuated solar collector prototype (ICSSWH) under different weather conditions," Renewable Energy, Elsevier, vol. 210(C), pages 701-714.
    3. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    4. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    5. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    6. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Krzysztof J. Wołosz & Krzysztof Urbaniec & Neven Duić, 2021. "Sustainable Development of Energy, Water and Environment Systems (SDEWES)," Sustainability, MDPI, vol. 13(9), pages 1-7, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    2. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    3. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    4. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    5. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    6. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    7. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    8. O'Hegarty, Richard & Kinnane, Oliver & McCormack, Sarah J., 2017. "Concrete solar collectors for façade integration: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 206(C), pages 1040-1061.
    9. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    10. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    11. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2017. "A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application," Applied Energy, Elsevier, vol. 186(P3), pages 436-449.
    12. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    13. Lubinda F. Walubita & Dagbegnon Clement Sohoulande Djebou & Abu N. M. Faruk & Sang Ick Lee & Samer Dessouky & Xiaodi Hu, 2018. "Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    14. Raheb Mirzanamadi & Carl-Eric Hagentoft & Pär Johansson, 2018. "Numerical Investigation of Harvesting Solar Energy and Anti-Icing Road Surfaces Using a Hydronic Heating Pavement and Borehole Thermal Energy Storage," Energies, MDPI, vol. 11(12), pages 1-23, December.
    15. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Zhou, Bochao & Pei, Jianzhong & Calautit, John Kaiser & Zhang, Jiupeng & Yong, Ling Xin & Pantua, Conrad Allan Jay, 2022. "Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)," Renewable Energy, Elsevier, vol. 194(C), pages 1-12.
    17. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    18. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    19. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:618-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.